• Title/Summary/Keyword: Crop Yield Prediction

Search Result 87, Processing Time 0.026 seconds

Development of a modified model for predicting cabbage yield based on soil properties using GIS (GIS를 이용한 토양정보 기반의 배추 생산량 예측 수정모델 개발)

  • Choi, Yeon Oh;Lee, Jaehyeon;Sim, Jae Hoo;Lee, Seung Woo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.5
    • /
    • pp.449-456
    • /
    • 2022
  • This study proposes a deep learning algorithm to predict crop yield using GIS (Geographic Information System) to extract soil properties from Soilgrids and soil suitability class maps. The proposed model modified the structure of a published CNN-RNN (Convolutional Neural Network-Recurrent Neural Network) based crop yield prediction model suitable for the domestic crop environment. The existing model has two characteristics. The first is that it replaces the original yield with the average yield of the year, and the second is that it trains the data of the predicted year. The new model uses the original field value to ensure accuracy, and the network structure has been improved so that it can train only with data prior to the year to be predicted. The proposed model predicted the yield per unit area of autumn cabbage for kimchi by region based on weather, soil, soil suitability classes, and yield data from 1980 to 2020. As a result of computing and predicting data for each of the four years from 2018 to 2021, the error amount for the test data set was about 10%, enabling accurate yield prediction, especially in regions with a large proportion of total yield. In addition, both the proposed model and the existing model show that the error gradually decreases as the number of years of training data increases, resulting in improved general-purpose performance as the number of training data increases.

A Prediction Model Based on Relevance Vector Machine and Granularity Analysis

  • Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.157-162
    • /
    • 2016
  • In this paper, a yield prediction model based on relevance vector machine (RVM) and a granular computing model (quotient space theory) is presented. With a granular computing model, massive and complex meteorological data can be analyzed at different layers of different grain sizes, and new meteorological feature data sets can be formed in this way. In order to forecast the crop yield, a grey model is introduced to label the training sample data sets, which also can be used for computing the tendency yield. An RVM algorithm is introduced as the classification model for meteorological data mining. Experiments on data sets from the real world using this model show an advantage in terms of yield prediction compared with other models.

Growth Simulation of Ilpumbyeo under Korean Environment Using ORYZA2000: III. Validation of Growth Simulation

  • Lee Chung-Kuen;Shin Jae-Hoon;Shin Jin-Chul;Kim Duk-Su;Choi Kyung-Jin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2004.04a
    • /
    • pp.104-105
    • /
    • 2004
  • [ $\bigcirc$ ] In the phenology model of ORYZA2000, the effect of photoperiod on the developmental rate was a little ignored because most crop parameters were measured with IRRI varieties which are insensitive to photoperiod, therefore it is very difficult to apply this phenology model directly to Korean varieties which are usually sensitive to photoperiod. $\bigcirc$ After introducing PPFAC and PPSE to improve the phenology model, the precision of heading date prediction was improved but not satisfied. $\bigcirc$ In the growth simulation using data from several regions, yield tended to be overestimated under high nitrogen applicated condition. $\bigcirc$ The precision of yield was much improved by introducing nitrogen use efficiency, but still different between regions because of different soil fertility or property of irrigation water between regions

  • PDF

Forecasting Crop Yield Using Encoder-Decoder Model with Attention (Attention 기반 Encoder-Decoder 모델을 활용한작물의 생산량 예측)

  • Kang, Sooram;Cho, Kyungchul;Na, MyungHwan
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.4
    • /
    • pp.569-579
    • /
    • 2021
  • Purpose: The purpose of this study is the time series analysis for predicting the yield of crops applicable to each farm using environmental variables measured by smart farms cultivating tomato. In addition, it is intended to confirm the influence of environmental variables using a deep learning model that can be explained to some extent. Methods: A time series analysis was performed to predict production using environmental variables measured at 75 smart farms cultivating tomato in two periods. An LSTM-based encoder-decoder model was used for cases of several farms with similar length. In particular, Dual Attention Mechanism was applied to use environmental variables as exogenous variables and to confirm their influence. Results: As a result of the analysis, Dual Attention LSTM with a window size of 12 weeks showed the best predictive power. It was verified that the environmental variables has a similar effect on prediction through wieghtss extracted from the prediction model, and it was also verified that the previous time point has a greater effect than the time point close to the prediction point. Conclusion: It is expected that it will be possible to attempt various crops as a model that can be explained by supplementing the shortcomings of general deep learning model.

Rice Yield Prediction Based on the Soil Chemical Properties Using Neural Network Model (인공신경망 모형을 이용하여 토양 화학성으로 벼 수확량 예측)

  • Sung J. H.;Lee D. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.6 s.113
    • /
    • pp.360-365
    • /
    • 2005
  • Precision agriculture attempts to improve cropping efficiency by variable application of crop treatments such as fertilizers and pesticides, within field on a point-by-point basis. Therefore, a more complete understanding of the relationships between yield and soil properties is of critical importance in precision agriculture. In this study, the functional relationships between measured soil properties and rice yield were investigated. A supervised back-propagation neural network model was employed to relate soil chemical properties and rice yields on a point-by point basis, within individual site-years. As a results, a positive correlation was found between practical yields and predicted yields in 1999, 2000, 2001, and 2002 are 0.916, 0.879, 0.800 and 0.789, respectively. The results showed that significant overfitting for yields with only the soil chemical properties occurred so that more of environmental factors, such as climatological data, variety, cultivation method etc., would be required to predict the yield more accurately.

Unveiling the Potential: Exploring NIRv Peak as an Accurate Estimator of Crop Yield at the County Level (군·시도 수준에서의 작물 수확량 추정: 옥수수와 콩에 대한 근적외선 반사율 지수(NIRv) 최댓값의 잠재력 해석)

  • Daewon Kim;Ryoungseob Kwon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.3
    • /
    • pp.182-196
    • /
    • 2023
  • Accurate and timely estimation of crop yields is crucial for various purposes, including global food security planning and agricultural policy development. Remote sensing techniques, particularly using vegetation indices (VIs), have show n promise in monitoring and predicting crop conditions. However, traditional VIs such as the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) have limitations in capturing rapid changes in vegetation photosynthesis and may not accurately represent crop productivity. An alternative vegetation index, the near-infrared reflectance of vegetation (NIRv), has been proposed as a better predictor of crop yield due to its strong correlation with gross primary productivity (GPP) and its ability to untangle confounding effects in canopies. In this study, we investigated the potential of NIRv in estimating crop yield, specifically for corn and soybean crops in major crop-producing regions in 14 states of the United States. Our results demonstrated a significant correlation between the peak value of NIRv and crop yield/area for both corn and soybean. The correlation w as slightly stronger for soybean than for corn. Moreover, most of the target states exhibited a notable relationship between NIRv peak and yield, with consistent slopes across different states. Furthermore, we observed a distinct pattern in the yearly data, where most values were closely clustered together. However, the year 2012 stood out as an outlier in several states, suggesting unique crop conditions during that period. Based on the established relationships between NIRv peak and yield, we predicted crop yield data for 2022 and evaluated the accuracy of the predictions using the Root Mean Square Percentage Error (RMSPE). Our findings indicate the potential of NIRv peak in estimating crop yield at the county level, with varying accuracy across different counties.

Development of Garlic & Onion Yield Prediction Model on Major Cultivation Regions Considering MODIS NDVI and Meteorological Elements (MODIS NDVI와 기상요인을 고려한 마늘·양파 주산단지 단수예측 모형 개발)

  • Na, Sang-il;Park, Chan-won;So, Kyu-ho;Park, Jae-moon;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.647-659
    • /
    • 2017
  • Garlic and onion are grown in major cultivation regions that depend on the crop condition and the meteorology of the production area. Therefore, when yields are to be predicted, it is reasonable to use a statistical model in which both the crop and the meteorological elements are considered. In this paper, using a multiple linear regression model, we predicted garlic and onion yields in major cultivation regions. We used the MODIS NDVI that reflects the crop conditions, and six meteorological elements for 7 major cultivation regions from 2006 to 2015. The multiple linear regression models were suggested by using stepwise regression in the extraction of independent variables. As a result, the MODIS NDVI in February was chosen the significant independent variable of the garlic and onion yield prediction model. In the case of meteorological elements, the garlic yield prediction model were the mean temperature (March), the rainfall (November, March), the relative humidity (April), and the duration time of sunshine (April, May). Also, the rainfall (November), the duration time of sunshine (January), the relative humidity (April), and the minimum temperature (June) were chosen among the variables as the significant meteorological elements of the onion yield prediction model. MODIS NDVI and meteorological elements in the model explain 84.4%, 75.9% of the garlic and onion with a root mean square error (RMSE) of 42.57 kg/10a, 340.29 kg/10a. These lead to the result that the characteristics of variations in garlic and onion growth according to MODIS NDVI and other meteorological elements were well reflected in the model.

Analysis of Literatures Related to Crop Growth and Yield of Onion and Garlic Using Text-mining Approaches for Develop Productivity Prediction Models (양파·마늘 생산성 예측 모델 개발을 위한 텍스트마이닝 기법 활용 생육 및 수량 관련 문헌 분석)

  • Kim, Jin-Hee;Kim, Dae-Jun;Seo, Bo-Hun;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.374-390
    • /
    • 2021
  • Growth and yield of field vegetable crops would be affected by climate conditions, which cause a relatively large fluctuation in crop production and consumer price over years. The yield prediction system for these crops would support decision-making on policies to manage supply and demands. The objectives of this study were to compile literatures related to onion and garlic and to perform data-mining analysis, which would shed lights on the development of crop models for these major field vegetable crops in Korea. The literatures on crop growth and yield were collected from the databases operated by Research Information Sharing Service, National Science & Technology Information Service and SCOPUS. The keywords were chosen to retrieve research outcomes related to crop growth and yield of onion and garlic. These literatures were analyzed using text mining approaches including word cloud and semantic networks. It was found that the number of publications was considerably less for the field vegetable crops compared with rice. Still, specific patterns between previous research outcomes were identified using the text mining methods. For example, climate change and remote sensing were major topics of interest for growth and yield of onion and garlic. The impact of temperature and irrigation on crop growth was also assessed in the previous studies. It was also found that yield of onion and garlic would be affected by both environment and crop management conditions including sowing time, variety, seed treatment method, irrigation interval, fertilization amount and fertilizer composition. For meteorological conditions, temperature, precipitation, solar radiation and humidity were found to be the major factors in the literatures. These indicate that crop models need to take into account both environmental and crop management practices for reliable prediction of crop yield.