In response to the increasing impact of climate change on agriculture, various cultivation technologies have been recently developed to improve agricultural productivity and reduce carbon emissions for carbon neutrality. This study presents an algorithm for estimating rice planting density in agriculture using drone-captured images and deep learning-based image analysis technology. The algorithm utilizes images collected from various paddies; these images are processed through pre-processing steps and serve as training data for the YOLOv5x deep learning model. The trained model demonstrated high precision and recall, effectively estimating the position information of rice plants in each image. By accurately estimating the position of rice plants based on the central coordinates in diverse unpaved environments, the model allowed for estimation of rice plant density in each paddy, producing values closely aligned with actual measurements. Moreover, the algorithm proposed in this study provides a novel approach for precise determination of rice planting density based on the position information of rice plants in the images. Analysis of drone footage from different regions capturing portions of paddies revealed that the developed algorithm exhibited a significant correlation (R2 =0.877) with actual planting density. This finding suggests the potential effective application of the algorithm in real-world agricultural settings. In conclusion, we believe that this research contributes to the ongoing digital transformation in agriculture by offering a valuable technology that supports the goals of enhancing efficiency, mitigating methane emissions, and achieving carbon neutrality, in response to the challenges posed by climate change.
Korean Journal of Agricultural and Forest Meteorology
/
v.20
no.3
/
pp.243-251
/
2018
The gridded simulation of crop growth, which would be useful for shareholders and policy makers, often requires specialized computation tasks for preparation of weather input data and operation of a given crop model. Here we developed an automated system to allow for crop growth simulation over a region using the DSSAT (Decision Support System for Agrotechnology Transfer) model. The system consists of modules implemented using R and shell script languages. One of the modules has a functionality to create weather input files in a plain text format for each cell. Another module written in R script was developed for GIS data processing and parallel computing. The other module that launches the crop model automatically was implemented using the shell script language. As a case study, the automated system was used to determine the maximum soybean yield for a given set of management options in Illinois state in the US. The AgMERRA dataset, which is reanalysis data for agricultural models, was used to prepare weather input files during 1981 - 2005. It took 7.38 hours to create 1,859 weather input files for one year of soybean growth simulation in Illinois using a single CPU core. In contrast, the processing time decreased considerably, e.g., 35 minutes, when 16 CPU cores were used. The automated system created a map of the maturity group and the planting date that resulted in the maximum yield in a raster data format. Our results indicated that the automated system for the DSSAT model would help spatial assessments of crop yield at a regional scale.
Nakano, Satoshi;Kato, Chihiro;Purcell, Larry C.;Shiraiwa, Tatsuhiko
Proceedings of the Korean Society of Crop Science Conference
/
2017.06a
/
pp.308-308
/
2017
The low and unstable yield of soybean has been a major problem in Japan. Excess soil moisture conditions are one of the major factors to restrict soybean productivity. More than 80 % of soybean crops are cultivated in converted paddy fields which often have poor drainage. In central and eastern regions of Japan, the early vegetative growth of soybean tends to be restricted by the flooding damage because the early growth period is overlapped with the rainy season. Field observation shows that induced excess water stress in early vegetative stage reduces dry matter production by decreasing intercepted radiation by leaf and radiation use efficiency (RUE) (Bajgain et al., 2015). Therefore, it is necessary to evaluate the responses of soybean growth for excess water conditions to assess these effects on soybean productions. In this study, we aim to modify the soybean crop model (Sinclair et al., 2003) by adding the components of the restriction of leaf area development and RUE for adaptable to excess water conditions. This model was consist of five components, phenological model, leaf area development model, dry matter production model, plant nitrogen model and soil water balance model. The model structures and parameters were estimated from the data obtained from the field experiment in Tsukuba. The excess water effects on the leaf area development were modeled with consideration of decrease of blanch emergence and individual leaf expansion as a function of temperature and ground water level from pot experiments. The nitrogen fixation and nitrogen absorption from soil were assumed to be inhibited by excess water stress and the RUE was assumed to be decreasing according to the decline of leaf nitrogen concentration. The results of the modified model were better agreement with the field observations of the induced excess water stress in paddy field. By coupling the crop model and the ground water level model, it may be possible to assess the impact of excess water conditions for soybean production quantitatively.
The study was carried out to develop a mathematical model for evaluating the effect of organic fertilizers in organic rice production systems. A function to simulate the nitrogen mineralization process in the paddy soil has been developed and integrated into ORYZA2000 crop growth model. Inorganic nitrogen in the soil was estimated by single exponential models, given temperature and C:N ratio of organic amendments. Data collected from the two-year field experiment were used to evaluate the performance of the model. The revised version of ORYZA2000 provided reasonable estimates of key variables for nitrogen dynamics and crop growth in the organic rice production systems. Coefficient of determination between the measured value and simulated value were 0.6613, 0.8938, and 0.8092, respectively for soil inorganic nitrogen, total dry matter production, and rice yield. This means that the model could be used to quantify nitrogen supplying capacity of organic fertilizers relative to chemical fertilizer. Nitrogen dynamics and rice growth simulated by the model would be useful information to make decision for organic fertilization in organic rice production systems.
IEMEK Journal of Embedded Systems and Applications
/
v.18
no.6
/
pp.285-292
/
2023
With the wide spread of smart farms and the advancements in IoT technology, it is easy to obtain additional data in addition to crop images. Consequently, deep learning-based crop disease diagnosis research utilizing multimodal data has become important. This study proposes a crop disease diagnosis method using multimodal supervised contrastive learning by expanding upon the multimodal self-supervised learning. RandAugment method was used to augment crop image and time series of environment data. These augmented data passed through encoder and projection head for each modality, yielding low-dimensional features. Subsequently, the proposed multimodal supervised contrastive loss helped features from the same class get closer while pushing apart those from different classes. Following this, the pretrained model was fine-tuned for crop disease diagnosis. The visualization of t-SNE result and comparative assessments of crop disease diagnosis performance substantiate that the proposed method has superior performance than multimodal self-supervised learning.
Hyun, Shinwoo;Yoo, Byoung Hyun;Park, Jinyu;Kim, Kwang Soo
Korean Journal of Agricultural and Forest Meteorology
/
v.19
no.4
/
pp.270-279
/
2017
Regional assessment of crop productivity using a gridded simulation approach could aid policy making and crop management. Still, little effort has been made to develop the systems that allows gridded simulations of crop growth using ORYZA 2000 model, which has been used for predicting rice yield in Korea. The objectives of this study were to develop a series of data processing modules for creating input data files, running the crop model, and aggregating output files in a region of interest using gridded data files. These modules were implemented using C++ and R to make the best use of the features provided by these programming languages. In a case study, 13000 input files in a plain text format were prepared using daily gridded weather data that had spatial resolution of 1km and 12.5 km for the period of 2001-2010. Using the text files as inputs to ORYZA2000 model, crop yield simulations were performed for each grid cell using a scenario of crop management practices. After output files were created for grid cells that represent a paddy rice field in South Korea, each output file was aggregated into an output file in the netCDF format. It was found that the spatial pattern of crop yield was relatively similar to actual distribution of yields in Korea, although there were biases of crop yield depending on regions. It seemed that those differences resulted from uncertainties incurred in input data, e.g., transplanting date, cultivar in an area, as well as weather data. Our results indicated that a set of tools developed in this study would be useful for gridded simulation of different crop models. In the further study, it would be worthwhile to take into account compatibility to a modeling interface library for integrated simulation of an agricultural ecosystem.
This study aims to investigate the present status and factors influencing farmers' satisfaction on the crop insurance for pear. Data analyzed were collected by survey and ordered logistic model was utilized for an empirical analysis. The results demonstrate that producers who are more highly educated and have an experience to receive an educational program related to crop insurance for pear are more likely to satisfy. In addition, it is shown that sales have a negative effect on the satisfaction whereas cultivated areas have a positive relationship with it. Based on the findings, it is necessary to develop a new educational program, strengthen public relations, and support an insurance premium for improving farmers' satisfaction of the insurance for pear.
This paper presents some of the results of a project whose aim has been to produce a full simulation model which would determine the efficacy of pesticides for use by both farmers and the bio-chemical industry. The work presented here describes how crop architecture can be mathematically modelled and how the mechanics of pesticide droplet capture can be simulated so that if a wind assisted droplet-trajectory model is assumed then droplet deposition patterns on crop surfaces can be predicted. This achievement, when combined with biological response models, will then enable the efficacy of pesticide use to be predicted.
This study suggests the yield forecast models for autumn chinese cabbage and radish using crop growth and development information. For this, we construct 24 alternative yield forecast models and compare the predictive power using root mean square percentage errors. The results shows that the predictive power of model including crop growth and development informations is better than model which does not include those informations. But the forecast errors of best forecast models exceeds 5%. Thus it is important to establish reliable data and improve forecast models.
The effectiveness of many greenhouse environment control methodologies depends on the growth information of crops. Acquisition of the growth information of crops requires a non-invasive and continuous monitoring method. Crop growth monitoring system using digital imaging technique was developed to conduct non-destructive and intact plant growth analyses. The monitoring system automatically measures crop growth information sends an appropriate control signal to the nutrient solution supplying system. To develop the monitoring system, a linear model that explains the relationship between the fresh weight and the top projected leaf area of a lettuce plant was developed from an experiment. The monitoring system was evaluated buy successive lettuce growing experiments. Results of the experiments showed that the developed system could estimate the fresh weight of lettuce from a lettuce image by using the linear model and generate an EC control signal according to the lettuce growth stage.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.