• 제목/요약/키워드: Critical thickness

검색결과 901건 처리시간 0.034초

가변형 임계 노즐유동에 관한 기초적 연구 (A Fundamental Study of a Variable Critical Nozzle Flow)

  • 김재형;김희동;박경암
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.484-489
    • /
    • 2003
  • The mass flow rate of gas flow through critical nozzle depends on the nozzle supply conditions and the cross-sectional area at the nozzle throat. In order that the critical nozzle can be operated at a wide range of supply conditions, the nozzle throat diameter should be controlled to change the flow passage area. This can be achieved by means of a variable critical nozzle. In the present study, both experimental and computational works are performed to develop variable critical nozzle. A cone-cylinder with a diameter of d is inserted into conventional critical nozzle. It can move both upstream and downstream, thereby changing the cross-sectional area of the nozzle throat. Computational work using the axisymmetric, compressible Navier-Stokes equations is carried out to simulate the variable critical nozzle flow. An experiment is performed to measure the mass flow rate through variable critical nozzle. The present computational results are in close agreement with measured ones. The boundary layer displacement and momentum thickness are given as a function of Reynolds number. An empirical equation is obtained to predict the discharge coefficient of variable critical nozzle.

  • PDF

후판 압연시 선단부 두께편차 보상을 위한 롤갭 설정에 관한 연구 (A Study on the Roll Gap Set-up to Compensate Thickness Variation at Top-end in Plate Rolling)

  • 임홍섭;주병돈;이건엽;서재형;문영훈
    • 소성∙가공
    • /
    • 제18권4호
    • /
    • pp.290-295
    • /
    • 2009
  • The roll gap set-up in the finishing mill is one of the most important technologies in the hot plate rolling process. As the target thickness can be obtained by the correct set-up of the roll gap, improving the roll gap set-up technology is very critical for plate thickness accuracy. The main cause of thickness variation in hot plate mills is the non-uniform temperature distribution along the length of the slab. The objective of this study is to adjust the roll gap set-up for the thickness accuracy of plate in hot rolling process considering top-end temperature drop. Therefore this study has concentrated on determining the correct amounts of thickness variation according to top-end temperature drop and roll gap to compensate thickness variation. The control method of roll gap set-up which can improve the thickness accuracy was proposed. The off-line simulation of compensated roll gap significantly decreases top-end thickness variation.

항공기 박판 구조의 가공가능 폭과 두께에 관한 실험 연구 (An Experiment of Machineable Width and Thickness of Airframe Thin Plate Structure)

  • 신용보;김수진
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.162-167
    • /
    • 2013
  • The most important factor in an aircraft manufacturing is stability and weight reduction. Most of aircraft components are designed with thin plate type to satisfy weight reduction needs. The thin plate is difficult to be machined because it is apt to be vibrated by dynamic force generated in milling process. The most critical factor in machining of aluminum thin plate is width and thickness between stiffeners. So we tested many cases to find out the machinable minimum thickness at different width between stiffeners. And with the data obtained from many tests, this papers suggested the standard width thickness relation that is machinable without vacuum fixture. Machinist will be able to reduce the cost of aircraft thin plate parts by reducing the number of vacuum fixture used by the help of this standard.

(Ga,Al):ZnO 투명전극층의 두께에 따른 CIGS 박막 태양전지의 성능 변화 연구 (Influence of (Ga,Al) : ZnO Window Layer Thickness on the Performance of CIGS Thin Film Solar Cells)

  • 차정화;전찬욱
    • Current Photovoltaic Research
    • /
    • 제5권1호
    • /
    • pp.28-32
    • /
    • 2017
  • In this paper, (Ga,Al):ZnO layers were deposited by sputtering to evaluate the device performance according to the thickness of the layer. As the thickness increased, low transmittance was observed, but the electrical resistance was improved. On the other hand, the highest efficiency was recorded at 400 nm device than a 500 nm of it. Therefore, since the critical thickness exists, it is necessary to set an adequate TCO layer thickness in consideration of the characteristics of the underlying film and the device.

열진공성형에서 적층필름 두께변화에 대한 수치 및 실험적 해석 (Numerical and Experimental Analysis of Laminated-Film Thickness Variation in Vacuum-Assisted Thermoforming)

  • 이호상;유영길
    • 소성∙가공
    • /
    • 제22권3호
    • /
    • pp.171-177
    • /
    • 2013
  • Vacuum-assisted thermoforming is one of the critical steps for successful application of film insert molding (FIM) to make parts of complex shape. If the thickness distribution of the formed film is non-uniform, then cracking, deformation, warpage, and wrinkling can easily occur at the injection molding stage. In this study, the simulation of thermoforming was performed to predict the film thickness distribution, and the results were compared with experiments. Uniaxial tensile tests with a constant crosshead speed for various high temperatures were conducted to investigate the stress-strain behavior. An instance of yielding occurred at the film temperature of $90^{\circ}C$, and the film stiffness increased with increasing crosshead speed. Two types of viscoelastic models, G'Sell model, K-BKZ model, were used to describe the measured stress-strain relationship. The predicted film thickness distributions were in good agreement with the experimental results.

$Si_3N_4$ trap layer의 두께에 따른 charge trap 특성 (Charge trap characteristics with $Si_3N_4$ tmp layer thickness)

  • 정명호;김관수;박군호;김민수;정종완;정홍배;조원주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.124-125
    • /
    • 2008
  • The charge trapping and tunnelling characteristics with various thickness of $Si_3N_4$ layer were investigated for application of TBE (Tunnel Barrier Engineered) non-volatile memory. We confirmed that the critical thickness of no charge trapping was existed with decreasing $Si_3N_4$ thickness. Also, the charge trap centroid x and charge trap density were extracted by using CCS (Constant Current Stress) method. Through the optimized thickness of $Si_3N_4$ layer, it can be improve the performance of non-volatile memory.

  • PDF

나노인덴테이션을 이용한 나노 임프린트된 폴리머 박막의 잔류두께 측정기법 (A measurement technique for residual thickness of nano-imprinted polymer film using nano-indentation.)

  • 이학주;고순규;김재현;허신;이응숙;정준호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1921-1926
    • /
    • 2003
  • Nano-imprint technology has been vigorously studied by many researchers for it is one of the most promising technologies for manufacturing the pattern with its critical dimension below 100nm. In the nano-imprint technology, nano patterns are transferred on a polymer film and the transferred patterns are used as an etch mask to define the designed patterns on a substrate or a metal layer. To this end, it is important to keep the residual thickness of the imprinted polymer film uniform. In this study, a novel measurement technique to measure the residual thickness of films is proposed based on nanoindentation theory. This technique has advantages of saving time and measuring the residual thickness of highly-localized portions in comparison with other techniques, but has limitation of requiring calibration process.

  • PDF

Effect of cross-sectional vortex formation on magnetization reversal in rectangular shaped Permalloy nanowires

  • Khan, Imran;Hong, Jisang;Hwang, Chanyong
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2013년도 자성 및 자성재료 국제학술대회
    • /
    • pp.115-115
    • /
    • 2013
  • In order to pinpoint the different factors responsible for magnetization reversal, we performed simulation using OOMMF micromagnetic package for rectangular shaped permalloy element having length of $1{\mu}m$, width 50-100 nm and thickness 15-80 nm with length to width ratio L/W>4. Interestingly an increase in coercivity with thickness is found for every width below a critical thickness. With increasing width and thickness, the distinct behavior of coercivity, hysteresis loops and reversal mechanism are presented. Vortex end domains are observed during the magnetization reversal beyond particular thickness, where the three dimension reversal mechanism is expected to begin, causing a sudden increase in coercivity.

  • PDF

Thermal buckling of FGM beams having parabolic thickness variation and temperature dependent materials

  • Arioui, Othman;Belakhdar, Khalil;Kaci, Abdelhakim;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제27권6호
    • /
    • pp.777-788
    • /
    • 2018
  • An investigation on the thermal buckling resistance of simply supported FGM beams having parabolic-concave thickness variation and temperature dependent material properties is presented in this paper. An analytical formulation based on the first order beam theory is derived and the governing differential equation of thermal stability is solved numerically using finite difference method. a function of thickness variation is introduced which controls the parabolic variation intensity of the beam thickness without changing its original material volume. The results showed the high importance of taking into account the temperature-dependent material properties in the thermal buckling analysis of such critical beam sections. Different Influencing parametric on the thermal stability are studied which may help in design guidelines of such complex structures.

The dynamic stability of a nonhomogeneous orthotropic elastic truncated conical shell under a time dependent external pressure

  • Sofiyev, A.H.;Aksogan, O.
    • Structural Engineering and Mechanics
    • /
    • 제13권3호
    • /
    • pp.329-343
    • /
    • 2002
  • In this research, the dynamic stability of an orthotropic elastic conical shell, with elasticity moduli and density varying in the thickness direction, subject to a uniform external pressure which is a power function of time, has been studied. After giving the fundamental relations, the dynamic stability and compatibility equations of a nonhomogeneous elastic orthotropic conical shell, subject to a uniform external pressure, have been derived. Applying Galerkin's method, these equations have been transformed to a pair of time dependent differential equations with variable coefficients. These differential equations are solved using the method given by Sachenkov and Baktieva (1978). Thus, general formulas have been obtained for the dynamic and static critical external pressures and the pertinent wave numbers, critical time, critical pressure impulse and dynamic factor. Finally, carrying out some computations, the effects of the nonhomogeneity, the loading speed, the variation of the semi-vertex angle and the power of time in the external pressure expression on the critical parameters have been studied.