DOI QR코드

DOI QR Code

Influence of (Ga,Al) : ZnO Window Layer Thickness on the Performance of CIGS Thin Film Solar Cells

(Ga,Al):ZnO 투명전극층의 두께에 따른 CIGS 박막 태양전지의 성능 변화 연구

  • Cha, Jung-Hwa (Department of Chemical engineering, Yeungnam University) ;
  • Jeon, Chan-Wook (Department of Chemical engineering, Yeungnam University)
  • Received : 2017.02.01
  • Accepted : 2017.02.23
  • Published : 2017.03.31

Abstract

In this paper, (Ga,Al):ZnO layers were deposited by sputtering to evaluate the device performance according to the thickness of the layer. As the thickness increased, low transmittance was observed, but the electrical resistance was improved. On the other hand, the highest efficiency was recorded at 400 nm device than a 500 nm of it. Therefore, since the critical thickness exists, it is necessary to set an adequate TCO layer thickness in consideration of the characteristics of the underlying film and the device.

Keywords

References

  1. C. W. Hsu, T. C. Cheng, C. H. Yang, Y. L. Shen, J. S. Wu, "Effect of oxygen addition on physical properties of ZnO thin film grown by radio frequency reactive magnetron sputtering", J. Alloys Compd. Vol. 509, pp. 1774-1776, 2011. https://doi.org/10.1016/j.jallcom.2010.10.037
  2. A. Klein, C. Korber, A. Wachau, F. Sauberlich, Y. Gassenbauer, S. P. Harvey, D. E. Proffit, T. O. Mason, "Transparent conducting oxides for photovoltaics: manipulation of Fermi level, work function and energy band alignment", Materials, Vol. 3 No. 11, pp. 4892-4914, 2010. https://doi.org/10.3390/ma3114892
  3. C. G. Granqvist, "Transparent conductors as solar energy materials: A panoramic review." Sol. Energy Mater. Sol. Cells, Vol. 91, No. 17, pp. 1529-1598, 2007. https://doi.org/10.1016/j.solmat.2007.04.031
  4. S.J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, "Recent progress in processing and properties of ZnO", Prog. Mater. Sci. Vol. 50, pp. 293-340, 2005. https://doi.org/10.1016/j.pmatsci.2004.04.001
  5. P. Reinhard, A. Chirila, P. Blosch, F. Pianezzi, S. Nishiwaki, S. Buecheler, A.N. Tiwari, "Review of Progress Toward 20% Efficiency Flexible CIGS Solar Cells and Manufacturing Issues of Solar Modules", IEEE J. Photovoltaics, Vol. 3, No. 1, pp. 572-580, 2013. https://doi.org/10.1109/JPHOTOV.2012.2226869
  6. S. Rani, P. Suri, P. K. Shishodia, R. M. Mehra, "Synthesis of nanocrystalline ZnO powder via sol-gel route for dye-sensitized solar cells", Sol. Energy Mater. Sol. Cells, Vol. 92, pp. 1639-1645. 2008. https://doi.org/10.1016/j.solmat.2008.07.015
  7. A. Kumar, C. Zhou, "The Race To Replace Tin-Doped Indium Oxide: Which Material Will Win?", ACS Nano, Vol. 4, No. 1, pp. 11-14, 2010. https://doi.org/10.1021/nn901903b
  8. M. C. Jun, S. U. Park, J. H. Koh, "Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films", Nanoscale Res. Lett. Vol. 7, pp. 639-644, 2012. https://doi.org/10.1186/1556-276X-7-639
  9. N. F. Cooray, K. Kushiya, A. Fujimaki, I Sugiyama, T. Miura, D. Okumura, M. Sato, M. Ooshita, O. Yamase, "Large area ZnO films optimized for graded band-gap $Cu(In,Ga)Se_2$-based thin-film mini-modules", Sol. Energy Mater. Sol. Cells, Vol. 49, pp. 291-297, 1997. https://doi.org/10.1016/S0927-0248(97)00055-X
  10. Y. Hagiwara, T. Nakada, A. Kunioka, "Improved $J_{SC}$ in CIGS thin film solar cells using a transparent conducting ZnO:B window layer", Sol. Energy Mater. Sol. Cells, Vol. 67, pp. 267-271, 2001. https://doi.org/10.1016/S0927-0248(00)00291-9
  11. J. A. van Delft, D. Garcia-Alonso, W. M. M. Kessels, "Atomic layer deposition for photovoltaics: applications and prospects for solar cell manufacturing", Semicond. Sci. Technol. Vol. 27 pp. 074002-074002-13, 2012.
  12. K. Kushiya, M. Tachiyuki, Y. Nagoya, A. Fujimaki, B. Sang, D. Okumura, M. Satoh, O. Yamase, "Progress in large-area $Cu(In,Ga)Se_2$-based thin film modules with a $Zn(O,S,OH)_x$ buffer layer", Sol. Energy Mater. Sol. Cells, Vol. 67, pp. 11-20, 2001. https://doi.org/10.1016/S0927-0248(00)00258-0
  13. F. Wang, M. Z. Wu, Y. Y. Wang, Y. M. Yu, X. M. Wu, L. J. Zhuge, "Influence of thickness and annealing temperature on the electrical, optical and structural properties of AZO thin films", Vacuum, Vol. 89, pp. 127-131, 2013. https://doi.org/10.1016/j.vacuum.2012.02.040
  14. T. Nakada, M. Mizutani, "18% Efficiency Cd-Free $Cu(In,Ga)Se_2$ Thin-Film Solar Cells Fabricated Using Chemical Bath Deposition (CBD)-ZnS Buffer Layers", Jpn. J. Appl. Phys. Vol. 41, pp. L165-L167, 2002. https://doi.org/10.1143/JJAP.41.L165
  15. S. A. Vanalakar, S. S. Mail, M. P. Suranasshi, P. S. Patil, "Quantum size effect in chemosynthesized nanostructured CdS thin films", Digest J. Nanomater. Biostruct., Vol. 5, pp. 805-810, 2010.
  16. S. Ishizuka, K. Sakurai, A. Yamada, K. Matsubara, P. Fons,K. Iwata, T. Kojima, "Fabrication of wide-gap $Cu(In_{1-x}Ga_x)Se_2$ thin film solar cells: a study on the correlation of cell performance with highly resistive i-ZnO layer thickness", Sol. Energy Mater. Sol. Cells, Vol. 87, No. 1, pp. 541-548, 2005. https://doi.org/10.1016/j.solmat.2004.08.017
  17. M. M. Islam, S. Ishizuka, A. Yamada, K. Matsubara, S. Niki, T. Sakurai, K. Akimoto, "Thickness study of Al:ZnO film for application as a window layer in $Cu(In_{1-x}Ga_x)Se_2$ thin film solar cell", Appl. Surf. Sci., Vol. 257, No. 9, pp. 4026-4030, 2011. https://doi.org/10.1016/j.apsusc.2010.11.169