• Title/Summary/Keyword: Critical speed

Search Result 1,475, Processing Time 0.036 seconds

Vibration Analysis and Critical Speeds of Rotating Polar Orthotropic Disks, Part II : Analysis Results (극직교 이방성 회전원판의 진동해석 및 임계속도, II : 해석결과)

  • Koo, Kyo-Nam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.247-254
    • /
    • 2006
  • This paper (Part II) provides the application results of the method presented in a companion paper (Part I) where the dynamic equation for rotating polar orthotropic disk is formulated and its solution method is considered. The natural frequencies and critical speed of polycarbonate CD are calculated to validate the present method and are shown to by very accurate. The critical speeds of typical GFRP and CFRP CD's are computed by aligning the fibers in radial and circumferential directions. The radially reinforced CFRP CD is shown to have the five times higher critical speed than that of the polycarbonate CD. The natural frequencies and critical speeds of disks with various elastic modulus ratios are obtained. The results show that the radially reinforced disk is more effective in increasing critical speed than the circumferentially reinforced disk.

Theoretical Review on the Vertical Geometric Design Standards for High-speed Roadway (초고속 주행환경에서의 종단경사 설계기준에 관한 기초연구)

  • Song, Mintae;Kang, Hoguen;Kim, Heungrae;Lee, Euijoon;Shin, Joonsoo;Kim, Jongwon
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.177-186
    • /
    • 2013
  • PURPOSES: The purpose of this study theoretically reviews vertical grade deriving process in super high speed environment and compares overseas design criteria with Domestic Standardization also draws suitable vertical grade design criteria of high standard for Domestic Circumstances in Korea. METHODS : By researching domestic vehicle registration status, calculating typical vehicle, using Vissim which is traffic simulation program, Speed-distance curve of the vehicle is derived under each design speed condition. Through Speed-distance curve, estimating critical length of grade and considering critical length of grade, maximum longitudinal incline is proposed. RESULTS : The result of domestic vehicle registration status, the typical vehicle for deriving vertical grade is calculated based on gravity horsepower ratio 200 lb/hp. For calculating critical length of grade, according to change speed of uphill entry, speed-distance curve is derived by using Vissim. Critical length of grade is calculated based on design speed 20 km/h criteria which is point of retardation. Estimated critical length of grade is 808 m and based on this result, maximum longitudinal incline was confirmed in the design speed between 130km/h to 140km/h. CONCLUSIONS: The case of the typical vehicle(truck) which is gravity horsepower ratio 200 lb/hp, maximum longitudinal incline 2% is desirable at the super high speed environment in the design speed between 130km/h to 140km/h.

Running Safety of High Speed Freight Bogie (고속주행용 화차대차의 주행안전성)

  • 이승일;최연선
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.3
    • /
    • pp.116-122
    • /
    • 2001
  • As freight traffic becomes heavier, the high speed of existing freight cars is essential, instead of the construction of a new railway. The high speed can be achieved by the modifications of freight bogie design. In this paper, an analytical model of freight bogie is developed to decide the critical speed. The dynamic responses of the analytical model are compared with the experimental data from a running test of freight bogie and showed good agreements between them. The analytical model is used to find the design of freight bogie. The parameter studies show that the reduction of wheelset mass ratio and the increase of the axle distance of freight bogie can increase the critical speed, but the primary lateral stiffness has little effects on the critical speed. And this study also shows that smaller wheel conicity deteriorates the running safety of freight car, which means that the overhauling of the wheel of freight bogie should be done regularly.

  • PDF

Analysis on the Snake Motion of One Freight Car for High Speed Running (고속주행을 위한 화차 한량의 사행동 해석)

  • 이승일;최연선
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.3
    • /
    • pp.149-155
    • /
    • 2003
  • The development of railway vehicles involves the proper selection of design parameters not only to achieve high speed but also to reduce the vibration of the train. In this study an analytical model of a freight car is developed to find the critical speed. The freight car can generate the snake motion of the lateral and yawing motion of the car body, the bogie, and the wheelset. Numerical analysis for the nonlinear equation motions with 17 degrees of freedom showed the running stability and critical speed due to the snake motion. Also, the vibration modes of the freight car was calculated using ADAMS/RAIL, which showed that the critical speed have the yawing modes of the car body and the bogie. Finally this paper shows that the snake motion of the vehicle can be controlled with the modifications of the design parameters.

Analysis on the Hunting Motion of the KTX Power Car (KTX 동력차의 헌팅운동 해석)

  • Lee, Seung-Il;Choi, Yeon-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.755-762
    • /
    • 2004
  • Dynamic analysis of the KTX can predict the dynamic motions in test drive. In this study an analytical model of the KTX is developed to find the critical speed. The numerical analysis for the nonlinear equation motions of 17 degrees of freedom shows the running stability and the critical speed due to the hunting motion of the KTX. Also, the vibration modes of the KTX are calculated using the ADAM/RAIL software, which show that the critical speed occurs for the yawing modes of the car body and the bogie. Finally, this paper shows that the critical speed of the KTX could be changed with the modifications of the design parameters of wheel conicity or wheel contact length.

Detecting Location and Depth of Cracks in Rotor using Critical Speed (임계속도를 이용한 로터의 결함 위치와 크기 판별)

  • Kim, Heung-Su;Jo, Maeng-Hyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.39-45
    • /
    • 2006
  • Structural health monitoring has been conducted by non-destructive evaluation method when a turbine rotor system of an aircraft engine has cracks. Local stiffness of a turbine rotor system is degraded and critical speed is changed due to the presence of cracks in rotor. Critical speed which is affected by location and depth of crack, is obtained using compliance matrix of cracked rotor. The database of the obtained critical speed is used to evaluate structural health monitoring of a rotor system of a gas turbine engine.

Critical Speed Analysis of a Vertical Pump (펌프회전체의 임계속도해석)

  • 전오성;김정태;임병덕
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.50-59
    • /
    • 1992
  • A critical speed analysis of a pump shaft has been investigated. Among various methods in the shaft critical speed calculation, a transfer matrix method has been examined in this research. After a brief review on the transfer matrix method, a modeling procedure for a continuous structure has been discussed. Then, a critical speed of a multistage pump shaft has been estimated up to several low modes. Throughout an analysis, parametric effects on the bearing stiffness, a degree of the modeling order, and attachmant of the impeller have been investigated. As an application example, a critical speed analysis of a verical pump which has been implemented in domestic electric power plants for cooling water circulation has been conducted in order to provide a safe operation as far as a pump vibration is concerned.

  • PDF

An Experimental Study on Validation of Nonlinear Critical Speed (비선형 임계속도 검증을 위한 실험적 연구)

  • 정우진;김성원
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.1
    • /
    • pp.12-18
    • /
    • 2000
  • This paper addresses the experimental study on the nonlinear critical speed and the validity of simple prediction formulation. The experiment on nonlinear critical speed is carried out using roller rigs, which has been impossible on track because of a possibility of an accident. In addition, experiment for a bogie is performed to check the difference in modeling a full railway vehicle and a bogie. It is found that nonlinear critical speed proves to be an inherent phenomenon of a railway vehicle itself and the difference of test results between a full railway vehicle and a bogie is comparatively negligible. Finally. the accuracy of simple prediction formulation for outbreak velocity and response frequency in hunting is investigated.

  • PDF

A Study on the Early Fracture Characteristics of Ceramic Tool for Carbon Tool Steel (탄소공구량에 대한 세라믹공구의 초기파손 특성에 관한 연구)

  • Kim, Kwang-Lae;Ryu, Bong-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.6
    • /
    • pp.112-119
    • /
    • 1995
  • Early fracture and cutting force of ceramic tool for hardened STC3 steel was investigated in this study. It was found that early fracture of ceramic tool was mostly occurred before normal wear was progressed beyond a critical cutting speed and normal wear was performed under the critical cutting speed. The relationships among critical cutting speed, which was a cause of early fracture, suggested cutting cross section, that is, maximum thickness of cut and width of cut, and cutting force were examined. The following conclusions were obtained: (1)Critical cutting speed showed a high value in the case of small maximum thickness of cut and large nose radius, but was not influenced by width of cut, (2)Principal, feed and radial force, respectively, showed the proportional value to constant cutting area, width of cut and maximum thickness of cut orderly, (3)Occurrence of early fracture was dependent upon radial force.

  • PDF

Journal Bearing Design Retrofit for Process Large Motor-Generator - Part II : Rotordynamics Analysis (프로세스 대형 모터-발전기의 저어널 베어링 설계 개선 - Part II : 로터다이나믹스 해석)

  • Lee, An Sung
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.265-271
    • /
    • 2012
  • In the preceding Part I study, for improving the unbalance response vibration of a large PRT motor-generator rotor fundamentally by design, a series of design analyses were carried out for bearing improvement by retrofitting from original plain partial journal bearings, applied for operation at a rated speed of 1,800 rpm, to final tilting pad journal bearings. To satisfy evenly key basic lubrication performances such as the minimum lift-off speed and maximum oil-film temperature, a design solution of 5-pad tilting pad journal bearings and maximizing the direct stiffness by about two times has been achieved. In this Part II study, a detailed rotordynamic analysis of the large PRT motor-generator rotor-bearing system will be performed, applying both the original plain partial journal bearings and the retrofitted tilting pad journal bearings, to confirm the effect of rotordynamic vibration improvement after retrofitting. The results show that the rotor unbalance response vibrations with the tilting pad journal bearings are greatly reduced by as much as about one ninth of those with the plain partial journal bearings. In addition, for the tilting pad journal bearings there exist no critical speed up to the rated speed and just one instance of a concerned critical speed around the rated speed, whereas for the plain partial journal bearings there exist one instance of a critical speed up to the rated speed and two instances of concerned critical speeds around the rated speed.