• Title/Summary/Keyword: Critical speed

Search Result 1,486, Processing Time 0.025 seconds

How IT Drives Innovations for Public Service: Mobile Office for Seoul Metropolitan Railway (IT 기반의 공공서비스 혁신: 서울도시철도공사의 모바일 오피스 사례)

  • Cho, Nam-Jae;Choi, Joung-In;Oh, Seung-Hee
    • Information Systems Review
    • /
    • v.14 no.1
    • /
    • pp.67-84
    • /
    • 2012
  • Recent increases in uncertainty and speed of market change are driving the adoption of new intelligent mobile office systems. Organizational information systems paradigm suggests that a right match between organizational characteristics and the use of technology is critical in producing desired results. Following such perspective this study developed the mobile office system case of Seoul Metropolitan Railway Transit(SMRT) in Korea. SMRT developed the mobile task-supporting environment that help the management of subway lines real-time without the restriction of time and space. They named the system as ST&F(SMRT Talk and Flash). They decided to develop the application systems in-houses they did not want to be overly dependent on external services in future changes and developments of the system. The new practice reduced the time for moving back and forth to 10% of their working time from previous 20%. The time used for paper works and administration chore also reduce to 10% of their working time from previous 30% on the average. The employees could use 80% of their time to concentrate on the completion of assigned task. The effects of this improvement resulted in the heightened efficiency of the use of human resources and the heightened level of railway safety. The case of SMRT shows that the mobile office system can be applied and extended to various business areas such as facility management and maintenance beyond such typical uses as sales and marketing support. Also, The result of case study will be a useful guideline on the construction and using of mobile office system.

  • PDF

CO2 Mineral Carbonation Reactor Analysis using Computational Fluid Dynamics: Internal Reactor Design Study for the Efficient Mixing of Solid Reactants in the Solution (전산유체역학을 이용한 이산화탄소 광물 탄산화 반응기 분석: 용액 내 고체 반응물 교반 향상을 위한 내부 구조 설계)

  • Park, Seongeon;Na, Jonggeol;Kim, Minjun;An, Jinjoo;Lee, Chaehee;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.612-620
    • /
    • 2016
  • Aqueous mineral carbonation process, in which $CO_2$ is captured through the reaction with aqueous calcium oxide (CaO) solution, is one of CCU technology enabling the stable sequestration of $CO_2$ as well as economic value creation from its products. In order to enhance the carbon capture efficiency, it is required to maximize the dissolution rate of solid reactants, CaO. For this purpose, the proper design of a reactor, which can achieve the uniform distribution of solid reactants throughout the whole reactor, is essential. In this paper, the effect of internal reactor designs on the solid dispersion quality is studied by using CFD (computational fluid dynamics) techniques for the pilot-scale reactor which can handle 40 ton of $CO_2$ per day. Various combination cases consisting of different internal design variables, such as types, numbers, diameters, clearances and speed of impellers and length and width of baffles are analyzed for the stirred tank reactor with a fixed tank geometry. By conducting sensitivity analysis, we could distinguish critical variables and their impacts on solid distribution. At the same time, the reactor design which can produce solid distribution profile with a standard deviation value of 0.001 is proposed.

The Effect of Exercise Intensity on Muscle Activity and Kinematic Variables of the Lower Extremity during Squat

  • Jung, Jae-Hu;Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.3
    • /
    • pp.197-203
    • /
    • 2017
  • Objective: The purpose of this study was to determine how exercise intensity affects muscle activity and kinematic variables during squat. Method: Fifteen trainers with >5 years of experience were recruited. For the electromyography (EMG) measurements, four surface electrodes were attached to both sides of the lower extremity to monitor the rectus femoris (RF) and biceps femoris. Three digital camcorders were used to obtain three-dimensional kinematics of the body. Each subject performed a squat in different conditions (40% one-repetition maximum [40%1RM], 60%1RM, and 80%1RM). For each trial being analyzed, three critical instants and two phases were identified from the video recording. For each dependent variable, one-way analysis of variance with repeated measures was used to determine whether there were significant differences among the three different conditions (p<.05). When a significant difference was found, post hoc analyses were performed using the contrast procedure. Results: The results showed that the average integrated EMG values of the RF were significantly greater in 80%1RM than in 40%1RM during the extension phase. The temporal parameter was significantly longer in 80%1RM than in 40%1RM and 60%1RM during the extension phase. The joint angle of the knee was significantly greater in 80%1RM than in 40%1RM at flexion. The range of motion of the knee was significantly less in 80%1RM than in 40%1RM and 60%1RM during the flexion phase and the extension phase. The angular velocity was significantly less in 80%1RM than in 40%1RM and 60%1RM during the extension phase. Conclusion: Generally, the increase of muscle strength decreases the pace of motion based on the relation between the strength and speed of muscle. In this study, we also found that the increase of exercise intensity may contribute to the increase of the muscle activity of the RF and the running time in the extension phase during squat motion. We observed that increased exercise intensity may hinder the regulation of the range of motion and joint angle. It is suitable to perform consistent movements while controlling the proper range of motion to maximize the benefit of resistance training.

Biomechanical Analysisz of Varying Backpack Loads on the Lower Limb Moving during Downhill Walking (내림 경사로 보행시 배낭 무게에 따른 하지 움직임의 운동역학적 분석)

  • Chae, Woen-Sik;Lee, Haeng-Seob;Jung, Jae-Hu;Kim, Dong-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.2
    • /
    • pp.191-198
    • /
    • 2015
  • Objective : The purpose of this study was to conduct biomechanical analysis of varying backpack loads on the lower limb movements during downhill walking over $-20^{\circ}$ ramp. Method : Thirteen male university students (age: $23.5{\pm}2.1yrs$, height: $175.7{\pm}4.6cm$, weight: $651.9{\pm}55.5N$) who have no musculoskeletal disorder were recruited as the subjects. Each subject walked over $20^{\circ}$ ramp with four different backpack weights (0%, 10%, 20% and 30% of body weight) in random order at a speed of $1.0{\pm}0.1m/s$. Five digital camcorders and two force plates were used to obtain 3-d data and kinetics of the lower extremity. For each trial being analyzed, five critical instants were identified from the video recordings. Ground reaction force, loading rate, decay rate, and resultant joint moment of the ankle and the knee were determined by the inverse dynamics analysis. For each dependent variable, one-way ANOVA with repeated measures was used to determine whether there were significant differences among four different backpack weight conditions (p<.05). When a significant difference was found, post hoc analyses were performed using the contrast procedure. Results : The results of this study showed that the medio-lateral GRFs at RHC in 20% and 30% body weight were significantly greater than the corresponding value in 0% of body weight. A consistent increase in the vertical GRFs as backpack loads increased was observed. The valgus joint movement of the knee at RTO in 30% body weight was significantly greater than the corresponding values in 0% and 10% body weight. The increased valgus moment of 30% body weight observed in this phase was associated with decelerating and stabilizing effects on the knee joint. The results also showed that the extension and valgus joint moments of the knee were systematically affected by the backpack load during downhill walking. Conclusion : Since downhill walking while carrying heavy external loads in a backpack may lead to excessive knee joint moment, damage can occur to the joint structures such as joint capsule and ligaments. Therefore, excessive repetitions of downhill walking should be avoided if the lower extremity is subjected to abnormally high levels of load over an extended period of time.

Emission Characteristics of HFC-23 (CHF3)/HCFC-22 (CHClF2) between Different Air Masses in Northeastern Asia (동북아시아 지역에서의 공기괴별 HFC-23/HCFC-22의 배출특성)

  • Li, Shanlan;Kim, Joo-Il;Kim, Kyung-Ryul;Muhle, Jens
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.490-498
    • /
    • 2010
  • HCFC-22 (chlorodifluoromethane, $CHClF_2$), one of the major components in various refrigeration, is emitted mostly from developing countries, as its consumption is not limited until 2013 by the Montreal Protocol. In addition, HFC-23 (trifluoromethane, $CHF_3$), a by-product in the manufacture of HCFC-22, is also a powerful greenhouse gas. Here, we discuss the regional emission characteristics of these compounds based on high-frequency in-situ measurements using the "Medusa" GC-MS system. HCFC-22 and HFC-23 baseline concentrations measured at Gosan (Jeju Island, Korea) from November 2007 to December 2008 increased by 1.8 ppt/yr and 0.6 ppt/yr, respectively. Pollution events of these compounds were observed, very frequently (e.g., ~2~3 times) at Gosan than baseline levels. All the measurement data were divided into four groups by simultaneously considering the ratio (HFC-23/HCFC-22) and concentration (HCFC-22) at Trinidad Head (TH, California, USA). The residence time of trajectories were then analyzed in each of the four groups. The results exhibited the existence of a strong correlation with air mass origin for each group: 1) Air masses originating from Siberia in the north and from the Pacific in the south had ratios of 0.08~0.12 and concentrations of 196.9~254.3 ppt which is highly comparable to background air at TH. 2) Air masses passing over the Southern China exhibited similar ratios but higher HCFC-22 concentrations. 3) Air masses passing over the Northern China had ratios of 0.12~0.21. 4) Air masses passing over Korea and/or Japan had ratios of 0.01~0.08. Our results suggest that the HFC-23/HCFC-22 ratio can be used as a good indicator for the assessment of the pollution with Chinese origin. We also confirmed differences in air masses traveling over Northern and Southern China, most likely due to differences in air mass travelling speed over these regions before arriving at Gosan. This signature may be treated as one of the critical components in identifying the emission sources from different parts of China.

Structure and Evolution of a Numerically Simulated Thunderstorm Outflow (수치 모사된 뇌우 유출의 구조와 진화)

  • Kim, Yeon-Hee;Baik, Jong-Jin
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.857-870
    • /
    • 2007
  • The structure and evolution of a thunderstorm outflow in two dimensions with no environmental wind are investigated using a cloud-resolving model with explicit liquid-ice phase microphysical processes (ARPS: Advanced Regional Prediction System). The turbulence structure of the outflow is explicitly resolved with a high-resolution grid size of 50m. The simulated single-cell storm and its associated Kelvin-Helmholtz (KH) billows are found to have the lift stages of development maturity, and decay. The secondary pulsation and splitting of convective cells resulted from interactions between cloud dynamics and microphysics are observed. The cooled downdrafts caused by the evaporation of rain and hail in the relatively dry lower atmosphere result in thunderstorm cold-air outflow. The outflow head propagates with almost constant speed. The KH billows formed by the KH instability cause turbulence mixing from the top of the outflow and control the structure of the outflow. Ihe KH billows are initiated at the outflow head, and pow and decay as moving rearward relative to the gust front. The numerical simulation results of the ratio of the horizontal wavelength of the fastest growing perturbation to the critical shear-layer depth and the ratio of the horizontal wavelength of the billow to its maximum amplitude are matched well with the results of other studies.

A Practical Feature Extraction for Improving Accuracy and Speed of IDS Alerts Classification Models Based on Machine Learning (기계학습 기반 IDS 보안이벤트 분류 모델의 정확도 및 신속도 향상을 위한 실용적 feature 추출 연구)

  • Shin, Iksoo;Song, Jungsuk;Choi, Jangwon;Kwon, Taewoong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.2
    • /
    • pp.385-395
    • /
    • 2018
  • With the development of Internet, cyber attack has become a major threat. To detect cyber attacks, intrusion detection system(IDS) has been widely deployed. But IDS has a critical weakness which is that it generates a large number of false alarms. One of the promising techniques that reduce the false alarms in real time is machine learning. However, there are problems that must be solved to use machine learning. So, many machine learning approaches have been applied to this field. But so far, researchers have not focused on features. Despite the features of IDS alerts are important for performance of model, the approach to feature is ignored. In this paper, we propose new feature set which can improve the performance of model and can be extracted from a single alarm. New features are motivated from security analyst's know-how. We trained and tested the proposed model applied new feature set with real IDS alerts. Experimental results indicate the proposed model can achieve better accuracy and false positive rate than SVM model with ordinary features.

Spatio-temporal Analysis of Freeway Emissions for Establishing Public Health Policies Based on Transportation (교통기반 공공보건 정책 수립을 위한 고속도로 차량배출가스 시공간 패턴분석)

  • LEE, Seol Young;JOO, Shinhye;YOUN, Seok Min;OH, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.5
    • /
    • pp.377-393
    • /
    • 2016
  • Vehicle emissions have been known as a critical factor to give a negative impact on the public health. In particular, particulate matters(PM) and NOx are highly related with respiratory diseases such as asthma. This study aimed at analyzing spatio-temporal patterns of PM and NOx generated from urban freeway traffic. MOVES, which is a well-known emission analysis tool presented by US Environmental Protection Agency(EPA), was applied to estimate PM and NOx based on traffic volume and speed data obtained from Seoul Outer Ring Expressway during January~June, 2012. K-means clustering analysis was used for categorizing the Level of Vehicle Emissions(LOVE) to support more systematical identification of the significance of emissions. Then, spatio-temporal analyses of estimated emissions were conducted by LOVE. Finally, this study proposed a set of strategies to reduce both PM and NOx to enhance public health based on analysis results.

An Agroclimatic Data Retrieval and Analysis System for Microcomputer Users(CLIDAS) (퍼스컴을 이용한 농업기후자료 검색 및 분석시스템)

  • 윤진일;김영찬
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.3
    • /
    • pp.253-263
    • /
    • 1993
  • Climatological informations have not been fully utilized by agricultural research and extension workers in Korea due mainly to inaccessbilty to the archived climate data. This study was initiated to improve access to historical climate data gathered from 72 weather stations of Korea Meteorological Administration for agricultural applications by using a microcomputer-based methodology. The climatological elements include daily values of average, maximum and minimum temperature, relative humidity, average and maximum wind speed, wind direction, evaporation, precipitation, sunshine duration and cloud amount. The menu-driven, user-friendly data retrieval system(CLIDAS) provides quick summaries of the data values on a daily, weekly and monthly basis and selective retrieval of weather records meeting certain user specified critical conditions. Growing degree days and potential evapotranspiration data are derived from the daily climatic data, too. Data reports can be output to the computer screen, a printer or ASCII data files. CLIDAS can be run on any IBM compatible machines with Video Graphics Array card. To run the system with the whole database, more than 50 Mb hard disk space should be available. The system can be easily upgraded for further expansion of functions due to the module-structured design.

  • PDF

Properties of Solar Radiation Components Reflected by the Sea Surface: - A Case of Jeju Island, South Korea - (해수면에 의해 반사된 태양복사 성분의 특성: 남한의 제주도 사례)

  • Fumichika, Uno;Hayashi, Yousay;Hwang, Soo-Jin;Kim, Hae-Dong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.2
    • /
    • pp.48-55
    • /
    • 2011
  • Solar radiation components reflected by the sea surface ($R_{ss}\uparrow$) are additional energy sources comprising the solar radiation regime. Previous studies, based on observational approaches, indicated that $R_{ss}\uparrow$ is an available climatological resource. However, an estimation process for $R_{ss}\uparrow$ has not been established. In this case study over Jeju Island in South Korea, we applied a new estimation process to solar radiation modeling and discussed the spatial distribution of $R_{ss}\uparrow$ and its seasonal variation. Our results showed that the illuminated area and the intensity of $R_{ss}\uparrow$ became greatest at the winter solstice and least at the summer solstice. We estimated the illuminated area of $R_{ss}\uparrow$ as it expanded over the southern slope of Jeju Island. At the winter solstice, on a daily basis, the area and intensity of illumination by $R_{ss}\uparrow$ were $182.3km^2$ and $0.41\;MJ\;m^{-2}\;day\;{-1}$, respectively. Comparing the daily accumulative and instantaneous values of $R_{ss}\uparrow$ intensity, the difference was about 20 times greater in daily cases than in instantaneous cases. On the other hand, for instantaneous values, the $R_{ss}\uparrow$ intensity accounted for up to 33% of the three components, i.e., direct, diffuse and reflected radiation in winter solstice. In addition, it was estimated that the sea surface reflectance depended on the wind speed. Therefore, in a practical use of this revised model, wind conditions should be considered as a critical factor in estimating $R_{ss}\uparrow$.