• Title/Summary/Keyword: Critical size effect

Search Result 428, Processing Time 0.027 seconds

Thermal stability analysis of temperature dependent inhomogeneous size-dependent nano-scale beams

  • Bensaid, Ismail;Bekhadda, Ahmed
    • Advances in materials Research
    • /
    • v.7 no.1
    • /
    • pp.1-16
    • /
    • 2018
  • Thermal bifurcation buckling behavior of fully clamped Euler-Bernoulli nanobeam built of a through thickness functionally graded material is explored for the first time in the present paper. The variation of material properties of the FG nanobeam are graded along the thickness by a power-law form. Temperature dependency of the material constituents is also taken into consideration. Eringen's nonlocal elasticity model is employed to define the small-scale effects and long-range connections between the particles. The stability equations of the thermally induced FG nanobeam are derived via the principal of the minimum total potential energy and solved analytically for clamped boundary conditions, which lead for more accurate results. Moreover, the obtained buckling loads of FG nanobeam are validated with those existing works. Parametric studies are performed to examine the influences of various parameters such as power-law exponent, small scale effects and beam thickness on the critical thermal buckling load of the temperature-dependent FG nanobeams.

MOLECULAR DYNAMICS SIMULATION OF INDENTATION ON SILVER COATED COPPER NANOSTRUCTURE

  • Kim, Am-Kee;Trandinh, Long;Kim, Il-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1794-1799
    • /
    • 2008
  • The effect of misfit on the indentation behaviour of silver coated copper multilayer was studied by molecular dynamics simulation. It was found that the misfit bands on interface formed by the mismatch of lattice structure between copper and silver in slip direction [110] and the dislocation band width depended on the mismatched lattice constants of materials. More dislocations were created and glided by indentation, which created a "four-wing flower" structure consisting of pile. up of dislocation at the interface. The size of "flower" depended on the thickness of silver layer. The critical thickness for "flower" was approximately 4nm above which the "flower" disappeared. As the result, deformation mechanisms such as dislocation pile-up, dislocation cross-slip and movement of misfit dislocation were revealed. Only silver atoms in the dislocation pile-up were involved in the creation of the "flower" while the dislocations in copper were glided in slip direction on interface.

  • PDF

Operating Current Characteristics of a kA Class Conductor for a SMES device (SMES용 kA급 초전도도체의 운전전류 특성)

  • 류경우;최병주;김해종;성기철
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.3-6
    • /
    • 2003
  • We have developed a small-sized superconducting magnetic energy storage (SMES) device, which provides electric power with high quality to sensitive electric loads. In large magnets such as the SMES magnets the stability, which is determined by several factors, e.g. conductors cooling condition and operating current, magnets winding structure, is a crucial problem. The effect of the cooling condition, the copper ratio, and the conductor's size upon the recovery currents was investigated experimentally. The results indicate that the recovery current characteristics of the strands vary considerably according to their insulation method. In the fully insulated strands with a low copper ratio, the recovery current densities range from 10 to 20 % of their engineering critical current densities. The recovery current density of the 30-conductor with a cooling channel is about a factor of 1.8 higher than that without a cooling channel.

  • PDF

반도체 제조공정 중 발생하는 오염입자 측정에 관한 연구

  • Na Jeong-Gil;Kim Tae-Seong
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.05a
    • /
    • pp.145-149
    • /
    • 2006
  • As the minimum feature size decreases, it is more difficult to control critical contaminant particles. For 16GB flash memory introduced by Samsung a few months ago, 50nm process was used and in this case, contaminant particles as small as 25nm should be control led. The particle beam mass spectrometer (PBMS) was developed to directly sample particles at pressures down to 100 mtorr. This instrument is sensitive to small particles (>5nm) produced in low concentrations ($>20cm^{-3}$). The PBMS has proved to be effect ive in measuring particles generated during semi-conductor fabrication processes, such as low-pressure chemical vapor deposition (LPCVD) of thin films. The operating principle of the PBMS and some measurement results are reviewed in this paper.

  • PDF

Simulations of Pixel Characteristics for Large Size and High Qualify TFT-LCD using a new sophisticated Capacitance Formulas (새로운 정전용량 계산식물 이용한 대면적 .고화질 TFT-LCD의 화소 특성 시뮬레이션)

  • 윤영준;정순신;김태형;박재우;최종선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.613-616
    • /
    • 1999
  • An active-matrix LCD using thin film transistors (TFTs)has been widely recognized as having potential for high-quality color flat-panel displays. Pixel-Design Array Simulation Tool (PDAST) was used to profoundly understand the gate signal distortion and pixel charging capability, which are the most critical limiting factors for high-quality TFT-LCDs. Since PDAST can simulate the gate data and pixel voltages of a certain pixel on TFT array at any time and at any location on an array, the effect of the new set of capacitance models on the pixel operations can be effectively analyzed, The set of models which is adopted from VLSI interconnections calculate more precise capacitance. The information obtained from this study could be utilized to design the larger area and finer image quality panel.

  • PDF

Effect of temperature gradient and residence time on droplet formation of gaseous Di-Octyl Phthalate (DOP가스의 액적형성에 미치는 온도경사 및 체류시간의 영향)

  • Lee, Myong-Hwa;Park, Byung Hyun
    • Particle and aerosol research
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Generally, large amounts of DOP(Di-Octyl Phthalate) chemicals are used as plasticizers in PVC compound manufacturing processes. However, it is very important to collect DOP species immediately from a workplace in order to protect worker's heath and recover them. To accomplish these objectives, we need to understand the droplet formation and growth mechanisms of DOP species. In this study, two important parameters such as temperature gradient and residence time were considered to clarify these mechanisms. We found that residence time is very critical to determine the droplet size distribution of DOP, whereas temperature gradient in general operating conditions(less than $-6.8^{\circ}C/cm$) is negligible.

Numerical Simulation of Structural Response in Bow Collision (1st Report) (선수 충돌시 구조 붕괴 거동에 대한 수치해석(제1보))

  • 박명규
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.28-35
    • /
    • 2000
  • In this paper a complicated structural behavior in collision and its effect of energy transmission to the collision bulkhead was examined through a methodology of the numerical simulation to obtain a ideal bow construction and a location of collision bulkhead against heat on collision. At present the bow structure is normally designed in consideration of its specific structural arrangement and internal and external loads in these areas such as hydrostatic and dynamic pressure wave impact and bottom slamming in accordance with the Classification rules and the specific location of collision bulkhead by SOLAS requirement. By these studies the behavior of the bow collapse due to collision was synthetically evaluated for the different size of tankers and its operational speed limits and by the results of these simulation it provides the optimal design concept for the bow construction to prevent the subsequent plastic deformation onto or near to the collision bulkhead boundary and to determine the rational location of collision bulkhead.

  • PDF

Fabrication of Ultra-Fine TiO$_2$ Powders Using Supercritical Fluid (초임계 유체를 이용한 초미립 TiO$_2$ 제조)

  • 송정환;임대영
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.10
    • /
    • pp.1049-1054
    • /
    • 1998
  • In order to fabricate ideal powders new processing is necessary in which the solute atoms in solution ra-pidly move to mix each other to the degree of molecular level the viscosity of solution should be low not to effect the moving of solute atoms and the powders could be directly obtained as crystalline. Supercritical fluid is defined as condensed gas sated up to its critical pressure and temperature. In this paper su-percritical fluid methods were studied as a new ceramic processing of powder preparation. The crystalline powders of TiO2 which are useful for electronic ceramic materials were fabricated by hydrolysis of titanium (IV) ethoxide using ethanol as a supercritical fluid at the condition of 270$\pm$3$^{\circ}C$, 7.3 MPa for 2hr. The cry stalline anatase powders could be directly obtained and its primary particle size was 20 min.

  • PDF

Biomaterials-assisted spheroid engineering for regenerative therapy

  • Lee, Na-Hyun;Bayaraa, Oyunchimeg;Zechu, Zhou;Kim, Hye Sung
    • BMB Reports
    • /
    • v.54 no.7
    • /
    • pp.356-367
    • /
    • 2021
  • Cell-based therapy is a promising approach in the field of regenerative medicine. As cells are formed into spheroids, their survival, functions, and engraftment in the transplanted site are significantly improved compared to single cell transplantation. To improve the therapeutic effect of cell spheroids even further, various biomaterials (e.g., nano- or microparticles, fibers, and hydrogels) have been developed for spheroid engineering. These biomaterials not only can control the overall spheroid formation (e.g., size, shape, aggregation speed, and degree of compaction), but also can regulate cell-to-cell and cell-to-matrix interactions in spheroids. Therefore, cell spheroids in synergy with biomaterials have recently emerged for cell-based regenerative therapy. Biomaterials-assisted spheroid engineering has been extensively studied for regeneration of bone or/and cartilage defects, critical limb ischemia, and myocardial infarction. Furthermore, it has been expanded to pancreas islets and hair follicle transplantation. This paper comprehensively reviews biomaterials-assisted spheroid engineering for regenerative therapy.

A Study on the Characteristics of Voltage Distribution of Stacked YBCO Coated Conductors in Series Connection

  • Chu, Sung-Yul;Hwang, Young-Jin;Kim, Young-Jae;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.4
    • /
    • pp.25-28
    • /
    • 2009
  • In order to apply superconducting electric machineries such as a Superconducting Fault Current Limiter (SFCL) to the power grid, the single module should be connected in series to have reasonable size. Superconducting tapes in the module also should be stacked to satisfy requirements such as large operation current of the power grid. This is because a single superconducting tape has restricted applicable current capacity. Moreover especially in SFCL at the fault, there should be equal voltage distribution in series-connected SFCL modules. In this paper, we investigated the voltage distribution in fault current of series-connected YBCO coated conductors (CC). Depending on characteristics of the CC samples such as critical current, even voltage distribution could be achieved or not. In addition, the effect of stacked CC on the change of voltage distribution comparing to non-stack cases in series connection was confirmed by experiments. As the CC stacked, voltage difference could be reduced.