• Title/Summary/Keyword: Critical properties

Search Result 2,286, Processing Time 0.031 seconds

Investigation on a Prediction Methodology of Thermodynamic Properties of Supercritical Hydrocarbon Aviation Fuels (초임계 탄화수소 항공유의 열역학적 물성치 예측 기법 연구)

  • Hwang, Sung-rok;Lee, Hyung Ju
    • Journal of ILASS-Korea
    • /
    • v.26 no.4
    • /
    • pp.171-181
    • /
    • 2021
  • This study presents a prediction methodology of thermodynamic properties by using RK-PR Equation of State in a wide range of temperature and pressure conditions including both sub-critical and super-critical regions, in order to obtain thermophysical properties for hydrocarbon aviation fuels and their products resulting from endothermic reactions. The density and the constant pressure specific heat are predicted in the temperature range from 300 to 1000 K and the pressure from 0.1 to 5.0 MPa, which includes all of the liquid and gas phases and the super-critical region of three representative hydrocarbon fuels, and then compared with those data obtained from the NIST database. Results show that the averaged relative deviations of both predicted density and constant pressure specific heat are below 5% in the specified temperature and pressure conditions, and the major sources of the errors are observed near the saturation line and the critical point of each fuel.

A study on the Dynamic Fracture Toughness for Polymeric Materials (폴리머재료의 파괴인성치에 관한 연구)

  • 최영식;박명균
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2001.05a
    • /
    • pp.311-317
    • /
    • 2001
  • The notched Charpy and Izod impact tests are the most prevalent techniques used to characterize the effects of high impulse loads on ploymeric materials. An analysis method for rubber toughened PVC is suggested to evaluate critical strain energy release rates(Gc) from the Charpy impact energy measurements. An Instrumented Charpy Impact tester was used to extract ancillary information concerning fracture properties in addition to total fracture properties and maximum critical loads. The stress intensity factor Kd was computed for varying amounts of rubber contents from the obtained maximum critical loads and also toughening effects were investigated as well.

  • PDF

Effect of Heat Treatment on Properties of Varistors (바리스터의 물성에 미치는 열처리 효과)

  • 홍경진;민용기;오수홍;조재철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.955-958
    • /
    • 2001
  • The structure characteristics of varistor of Zn oxide to depend on the breakdown voltage has been investigated to annealing condition by additive material of Sb$_2$O$_3$ system. The breakdown voltage that has not doping Sb$_2$O$_3$ was 235[V]. ZnO varistors was shown ohmic properties when it's applied voltage was below critical voltage. It was shown non-ohmic properties over critical voltage, because current was increased with decreasing resistance. High voltage ZnO varistors had high breakdown voltage, but it had bad electrical stability with various surge. Sb$_2$O$_3$was increased non-linear coefficient in ZnO varistors grain boundary.

  • PDF

Synergic Effect of Clay on the Mechanical and Electrical Properties of SWCNT/Epoxy Composites (SWCNT/에폭시 복합체의 기계적 전기적 성질에 미치는 Clay의 상승효과)

  • Choi, Won Seok;Ryu, Sung Hun
    • Elastomers and Composites
    • /
    • v.49 no.3
    • /
    • pp.204-209
    • /
    • 2014
  • Sodium-montmorillonite ($Na^+$-MMT) was introduced into single wall carbon nanotube (SWCNT)/epoxy composite to investigate the effect of MMT size and MMT/SWCNT ratio on the mechanical and electrical properties of composite. Three different sizes of MMTs were used and all were found to function as effective dispersion aids for SWCNTs. Mechanical properties of SWCNT/epoxy composite increased with MMT content; tending to decrease once the MMT content reached a critical level. However, the surface electrical resistance decreased with increasing MMT content and tended to increase after the critical content was reached. Critical MMT/SWCNT ratio for maximum mechanical properties and minimum electrical resistivity was strongly dependent on the MMT size. Critical MMT/SWCNT ratio was decreased with MMT size.

Line-shaped superconducting NbN thin film on a silicon oxide substrate

  • Kim, Jeong-Gyun;Suh, Dongseok;Kang, Haeyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.20-25
    • /
    • 2018
  • Niobium nitride (NbN) superconducting thin films with the thickness of 100 and 400 nm have been deposited on the surfaces of silicon oxide/silicon substrates using a sputtering method. Their superconducting properties have been evaluated in terms of the transition temperature, critical magnetic field, and critical current density. In addition, the NbN films were patterned in a line with a width of $10{\mu}m$ by a reactive ion etching (RIE) process for their characterization. This study proves the applicability of the standard complementary metal-oxide-semiconductor (CMOS) process in the fabrication of superconducting thin films without considerable degradation of superconducting properties.

Effect of Atmospheric Plasma Treatment of Carbon Fibers on Crack Resistance of Carbon Fibers-reinforced Epoxy Composites

  • Park, Soo-Jin;Oh, Jin-Seok;Rhee, Kyong-Yop
    • Carbon letters
    • /
    • v.6 no.2
    • /
    • pp.106-110
    • /
    • 2005
  • In this work, the effects of atmospheric oxygen plasma treatment of carbon fibers on mechanical interfacial properties of carbon fibers-reinforced epoxy matrix composites was studied. The surface properties of the carbon fibers were determined by acid/base values, Fourier-transform infrared spectrometer (FT-IR), and X-ray photoelectron spectroscopy (XPS) analyses. Also, the crack resistance properties of the composites were investigated in critical stress intensity factor ($K_{IC}$), and critical strain energy release rate mode II ($G_{IIC}$) measurements. As experimental results, FT-IR of the carbon fibers showed that the carboxyl/ester groups (C=O) at 1632 $cm^{-1}$ and hydroxyl group (O-H) at 3450 $cm^{-1}$ were observed for the plasma treated carbon fibers, and the treated carbon fibers had the higher O-H peak intensity than that of the untreated ones. The XPS results also indicated that the $O_{1S}/C_{1S}$ ratio of the carbon fiber surfaces treated by the oxygen plasma led to development of oxygen-containing functional groups. The mechanical interfacial properties of the composites, including $K_{IC}$ (critical stress intensity factor) and $G_{IIC}$ (critical strain energy release rate mode II), were also improved for the oxygen plasma-treated carbon fibersreinforced composites. These results could be explained that the oxygen plasma treatment played an important role to increase interfacial adhesions between carbon fibers and epoxy matrix resins in our composite system.

  • PDF

The Influence of Fe Particle Size on the Critical Properties of MgB2 Superconductor (MgB2 초전도체의 임계특성에 대한 Fe 입자 크기의 영향)

  • Jeong, Hyeondeok;Lee, Dong-Gun;Ryu, Sung-Soo;Park, Hai-Woong;Kim, Chan-Joong;Jun, Byung-Hyuk
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.432-436
    • /
    • 2019
  • This study demonstrates the effect of addition of Fe particles of different sizes on the critical properties of the superconductor $MgB_2$. Bulk $MgB_2$ is synthesized by ball milling Mg and B powders with Fe particles at $900^{\circ}C$. When Fe particles with size less than $10{\mu}m$ are added in $MgB_2$, they easily react with B and form the FeB phase, resulting in a reduction in the amount of the $MgB_2$ phase and deterioration of the crystallinity. Accordingly, both the critical temperature and the critical current density are significantly reduced. On the other hand, when larger Fe particles are added, the $Fe_2B$ phase forms instead of FeB due to the lower reactivity of Fe toward B. Accordingly, negligible loss of B occurs, and the critical properties are found to be similar to those of the intact $MgB_2$.

A Study on Critical Strain Energy Release Rate Mode II of Chemically Treated SiC-filled Epoxy Composites (표면처리된 탄화규소강화 에폭시 복합재료의 GIIC 특성)

  • Park, Soo-Jin;Oh, Jin-Seok
    • Journal of Adhesion and Interface
    • /
    • v.6 no.4
    • /
    • pp.1-6
    • /
    • 2005
  • In this work, the effect of chemical treatments on surface properties of SiC was investigated in crack resistance properties of SiC/epoxy composites. The surface properties of SiC were determined by acid/base values and FT-IR measurements. Also the crack resistance properties of the composites were studied in critical strain energy release rate mode II ($G_{IIC}$) measurements. As a result, the acidically treated SiC had higher acid value than that of untreated SiC or basically treated SiC. The crack resistance properties of the composites had been improved in the specimens treated by acidic solution. These results were could be attributed to the acide-base intermolecular interaction between SiC and epoxy resin, resulting in increase of the degree of adhesion at interfaces.

  • PDF

Load-carrying capacities and failure modes of scaffold-shoring systems, Part II: An analytical model and its closed-form solution

  • Huang, Y.L.;Kao, Y.G.;Rosowsky, D.V.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.1
    • /
    • pp.67-79
    • /
    • 2000
  • Critical loads and load-carrying capacities for steel scaffolds used as shoring systems were compared using computational and experimental methods in Part I of this paper. In that paper, a simple 2-D model was established for use in evaluating the structural behavior of scaffold-shoring systems. This 2-D model was derived using an incremental finite element analysis (FEA) of a typical complete scaffold-shoring system. Although the simplified model is only two-dimensional, it predicts the critical loads and failure modes of the complete system. The objective of this paper is to present a closed-form solution to the 2-D model. To simplify the analysis, a simpler model was first established to replace the 2-D model. Then, a closed-form solution for the critical loads and failure modes based on this simplified model were derived using a bifurcation (eigenvalue) approach to the elastic-buckling problem. In this closed-form equation, the critical loads are shown to be function of the number of stories, material properties, and section properties of the scaffolds. The critical loads and failure modes obtained from the analytical (closed-form) solution were compared with the results from the 2-D model. The comparisons show that the critical loads from the analytical solution (simplified model) closely match the results from the more complex model, and that the predicted failure modes are nearly identical.

New processing technique of TFA-MOD YBCO coated conductors using the '211' process (211 공정을 이용한 새로운 TFA-MOD YBCO 박막 선재 제조)

  • Lim, Jun-Hyung;Jang, Seok-Hern;Kim, Kyu-Tae;Lee, Jin-Sung;Yoon, Kyung-Min;Park, Eui-Cheol;Joo, Jin-Ho
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.140-144
    • /
    • 2006
  • We fabricated the YBCO films on single crystal $LaAlO_3$ substrates via a metal organic deposition (MOD) process. In the process, $Y_2Ba_1Cu_1O_x$ and $Ba_3Cu_5O_8$ powders were dissolved in trifluoroacetic acid (TFA) followed by calcining and firing heat treatments. To evaluate the effects of the firing temperature on YBCO phase formation and critical properties, the films were fired at $750^{\circ}C,\;775^{\circ}C\;and\;800^{\circ}C$ after calcining at $430^{\cric}C$. Microstructure observation indicated that a crack-free surface formed and a strong biaxial texture was developed. The FWHM of out-of-plane texture was measured to be in the range of $4.3^{\cric}-7.0^{\circ}$ for all the films. When the YBCO film was fired at $775^{\cric}C$, it had the highest critical properties: 88.5 K of critical temperature and 16 A/cm-width of critical current ($1MA/cm^2$ as critical current density). On the other hand, those properties were degraded as firing at $750^{\circ}C\;and\;800^{\circ}C$. It is considered that the improved critical values are partly owing to dense and homogeneous microstructure, strong texture, and high oxygen content.

  • PDF