Browse > Article
http://dx.doi.org/10.4150/KPMI.2019.26.5.432

The Influence of Fe Particle Size on the Critical Properties of MgB2 Superconductor  

Jeong, Hyeondeok (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
Lee, Dong-Gun (Sam Dong Co., Ltd., R&D Center)
Ryu, Sung-Soo (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
Park, Hai-Woong (Department of Materials Engineering, Korea University of Technology Education)
Kim, Chan-Joong (Neutron and Radioisotope Application Research Division, Korea Atomic Energy Research Institute)
Jun, Byung-Hyuk (Neutron and Radioisotope Application Research Division, Korea Atomic Energy Research Institute)
Publication Information
Journal of Powder Materials / v.26, no.5, 2019 , pp. 432-436 More about this Journal
Abstract
This study demonstrates the effect of addition of Fe particles of different sizes on the critical properties of the superconductor $MgB_2$. Bulk $MgB_2$ is synthesized by ball milling Mg and B powders with Fe particles at $900^{\circ}C$. When Fe particles with size less than $10{\mu}m$ are added in $MgB_2$, they easily react with B and form the FeB phase, resulting in a reduction in the amount of the $MgB_2$ phase and deterioration of the crystallinity. Accordingly, both the critical temperature and the critical current density are significantly reduced. On the other hand, when larger Fe particles are added, the $Fe_2B$ phase forms instead of FeB due to the lower reactivity of Fe toward B. Accordingly, negligible loss of B occurs, and the critical properties are found to be similar to those of the intact $MgB_2$.
Keywords
Superconductor; $MgB_2$; Fe addition; Fe particle size; Critical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu: Nature, 410 (2001) 63.   DOI
2 C. Buzea and T. Yamashita: Supercond. Sci. Technol., 14 (2001) 115.   DOI
3 V. Ferrando, P. Orgiani, A.V. Pogrebnyakov, J. Chen, Q. Li, J. M. Redwing, X. X. Xi, J. E. Giencke, C.-B. Eom, Q.-R. Feng, J. B. Betts and C. H. Mielke: Appl. Phys. Lett., 87 (2005) 252509.   DOI
4 B. A. Glowacki, M. Majoros, M. Vickers, J. E. Evetts, Y. Shi and I. McDougall: Supercond. Sci. Technol., 14 (2001) 193.   DOI
5 T. Holubek, P. Kovac and T. Melisek: Supercond. Sci. Technol., 18 (2005) 1218.   DOI
6 H. Kumakura, A. Matsumoto, H. Fujii and K. Togano: Appl. Phys. Lett., 79 (2001) 2435.   DOI
7 E. Martinez, L. A. Angurel and R. Navarro: Supercond. Sci. Technol., 15 (2002) 1043.   DOI
8 B. Q. Fu, Y. Feng, G. Yan, C. F. Liu, L. Zhou, L. Z. Cao, K. Q. Ruan and X. G. Li: Physica C, 392-396 (2003) 1035.   DOI
9 S. I. Schlachter, A. Frank, B. Ringsdorf, H. Orschulko, B. Obst, B. Liu and W. Goldacker: Physica C, 445-448 (2006) 777.   DOI
10 F. Karaboga, A. T. Ulgen, H. Yetis, M. Akdogan, M. Pakdil and I. Belenli: Mater. Sci. Eng., A, 721 (2018) 89.   DOI
11 S. X. Dou, S. Soltanian, Y. Zhao, E. Getin, Z. Chen, O. Shcherbakova and J. Horvat: Supercond. Sci. Technol., 18 (2005) 710.   DOI
12 C. H. Cheng, Y. Yang, C. Ke and H. T. Lin: Physica C, 470 (2010) 1092.   DOI
13 C. J. Kim, J. H. Yi, B. H. Jun, B. Y. You, S. D. Park and K. N. Choo: Physica C, 502 (2014) 4.   DOI
14 J. H. Yi, K. T. Kim, B. H. Jun, J. M. Sohn, B. G. Kim, J. Joo and C. J. Kim: Physica C, 469 (2009) 1192.   DOI
15 M. Keddam, M. Kulka, N. Makuch, A. Pertek and L. Maldzinski: Appl. Surf. Sci., 298 (2014) 155.   DOI
16 V. I. Dybkov: Powder Metall. Met. Ceram., 54 (2016) 652.   DOI
17 D. K. Singh, B. Tiwari, R. Jha, H. Kishan and V. P. S. Awana: Physica C, 505 (2014) 104.   DOI
18 B. H. Jun, J. H. Kim, C. J. Kim and K. N. Choo: J. Alloys Compd., 650 (2015) 794.   DOI