• Title/Summary/Keyword: Critical flow

Search Result 1,771, Processing Time 0.032 seconds

Flow-induced Vibration of Carbon Nanotubes Conveying Fluid (탄소나노튜브의 유체유발 진동)

  • Song, Oh-Seop;Choi, Jong-Woon;Gil, Bo-Ramm
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.242-249
    • /
    • 2008
  • In this paper, flow-induced flutter instability of cantilever carbon nanotubes conveying fluid and modelled as a thin-walled beam is investigated. Non-classical effects of transverse shear and rotary inertia are incorporated in this study. The governing equations and the associated boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extend Galerkin method which enables us to obtain more exact solutions compared with conventional Galerkin method. Cantilevered carbon nanotubes are damped with decaying amplitude for flow velocity below a certain critical value, however, beyond this critical flow velocity, flutter instability may occur. Variations of critical flow velocity with both radius ratio and length of carbon nanotubes are investigated and pertinent conclusion is outlined.

  • PDF

Flow-induced Vibration of Carbon Nanotubes Conveying Fluid (탄소나노튜브의 유체유발 진동)

  • Choi, Jong-Woon;Gil, Bo-Ramm;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.6
    • /
    • pp.654-662
    • /
    • 2008
  • In this paper, flow-induced flutter instability of cantilever carbon nanotubes conveying fluid and modelled as a thin-walled beam is investigated. Non-classical effects of transverse shear and rotary inertia are incorporated in this study. The governing equations and the associated boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extend Galerkin method which enables us to obtain more exact solutions compared with conventional Galerkin method. Cantilevered carbon nanotubes are damped with decaying amplitude for flow velocity below a certain critical value, however, beyond this critical flow velocity, flutter instability may occur. Variations of critical flow velocity with both radius ratio and length of carbon nanotubes are investigated and pertinent conclusion is outlined.

Flow Characteristics of Two-Dimensional Closed Cavity near Unsteady Critical Reynolds Numbers (2차원의 밀폐캐비티의 비정상 임계레이놀즈수 근방의 유동특성)

  • Kim, Jin-Gu;Kim, Chun-Sik;Lee, Yeong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.22-29
    • /
    • 1996
  • Flow characteristics of two-dimensional closed square cavities near unsteady critical Reynolds numbers were studied numerically at four Reynolds numbers : $8{\times}10^3,\;8.5{\times}10^3,\;9{\times}10^3\;and\;9.5{\times}10^3.$ A convection conservative difference scheme based upon SOLA to maintain the nearly 2nd-order spatial accuracy is adopted on irregular grid formation. Irregular grid number is $80{\times}80$ and its minimum size is about 1/400 of the cavity height(H) and its maximum is about 1/53 H. The result shows that the critical Reynolds number indicating the emergence of flow wnsteadiness is ranging from Re=$8{\times}10^3\;to\;8.5{\times}10^3$ and their flow patterns reveal periodic fluctuation during transient and fully developed stages. But macroscopic flow behavior in terms of instantaneous and time-mean characteristics represent remarkable difference.

  • PDF

DESIGN AND APPLICATION OF A SINGLE-BEAM GAMMA DENSITOMETER FOR VOID FRACTION MEASUREMENT IN A SMALL DIAMETER STAINLESS STEEL PIPE IN A CRITICAL FLOW CONDITION

  • Park, Hyun-Sik;Chung, Chang-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.349-358
    • /
    • 2007
  • A single-beam gamma densitometer is utilized to measure the average void fraction in a small diameter stainless steel pipe under critical flow conditions. A typical design of a single-beam gamma densitometer is composed of a sealed gammaray source, a collimator, a scintillation detector, and a data acquisition system that includes an amplifier and a single channel analyzer. It is operated in the count mode and can be calibrated with a test pipe and various types of phantoms made of polyethylene. A good average void fraction is obtained for a small diameter pipe with various flow regimes of the core, annular, stratified, and bubbly flows. Several factors influencing the performance of the gamma densitometer are examined, including the distance between the source and the detector, the measuring time, and the ambient temperature. The void fraction is measured during an adiabatic downward two-phase critical flow in a vertical pipe. The test pipe has an inner diameter of 10.9 mm and a thickness of 3.2 mm. The average void fraction was reasonably measured for a two-phase critical flow in the presence of nitrogen gas.

Quantification of Realistic Discharge Coefficients for the Critical Flow Model of RELAP5/MOD3/KAERl (RELAP5 / MOD3/ KAERI의 임계유동모델을 위한 실제적 배출계수의 정량화)

  • Kwon, T.S.;Chung, B.D.;Lee, W.J.;Lee, N.H.;Huh, J.Y.
    • Nuclear Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.701-709
    • /
    • 1995
  • The realistic discharge coefficient for the critical How model of RELAP5/AOD3/KAERI are determined for the subcooled and too-phase critical flow by assessments of nine MARVIKEN Critical flew Test(CFT). The selected test runs include a high initial subcooling and large nozzle aspect rat-io(L/D). The code assessment results show that RELAP5/MOD3/KAERI over-predicts the subcooled critical flow and under-predicts the two-phase critical flow. Using these result, the realistic discharge coefficients of critical flow models are quantified by an iterative method. The realistic discharge coefficients are determined to be 0.89 for the subcooled critical How and 1.07 for the two-phase critical flow, and the associated standard deviations are 0.0349 and 0.1189, respectively. The results obtained from this study can be applied to calculate the realistic system response of Large Break Loss of Coolant Accident and to evaluate the realistic Emergency Core Cooling System performance.

  • PDF

A Computational Work of Critical Nozzle Flow for High-Pressure Hydrogen Gas Mass Flow Measurement (고압수소 유량계측용 임계노즐 유동의 수치해석적 연구)

  • Lee, Jun-Hee;Kim, Heuy-Dong;Park, Kyung-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.227-230
    • /
    • 2006
  • The method of mass flow rate measurement using a critical nozzle is well established in the flow satisfying ideal gas law. However, in the case of measuring high-pressure gas flow, the current method shows invalid discharge coefficient because the flow does not follow ideal gas law. Therefore an appropriate equation of state considering real gas effects should be applied into the method. The present computational study has been performed to give an understanding of the physics of a critical nozzle flow for high-pressure hydrogen gas and find a way for the exact mass flow prediction. The two-dimensional, axisymmetric, compressible Navier-Stokes equations are computed using a fully implicit finite volume method. The real gas effects are considered in the calculation of discharge coefficient as well as in the computation. The computational results are compared with the previous experimental data and predict well the measured mass flow rates. It has been found that the discharge coefficient for high-pressure hydrogen gas can be corrected properly adopting the real gas effects.

  • PDF

Beam-target configurations and robustness performance of the tungsten granular flow spallation target for an Accelerator-Driven Sub-critical system

  • Cai, Han-Jie;Jia, Huan;Qi, Xin;Lin, Ping;Zhang, Sheng;Tian, Yuan;Qin, Yuanshuai;Zhang, Xunchao;Yang, Lei;He, Yuan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2650-2659
    • /
    • 2022
  • The dense granular flow spallation target is a new target concept proposed for an Accelerator-Driven Sub-critical (ADS) system. In this paper, the beam-target configurations of a tungsten granular flow target for the ADS with a thermal power of 1 GW is explored. The beam profile options using different scanning methods are discussed. The critical geometry parameters are adjusted to investigate the performance of the granular target from the aspects of neutron efficiency, stability and temperature distribution in target medium. To figure out how the target under accident conditions would behave, different clogging conditions are induced in the simulation. The dynamic processes are analyzed and some important parameters such as abnormal temperature rise and beam cutoff time window are obtained. The response of the sub-critical reactor to a clogging accident is also investigated. It is indicated that the monitoring of the granular flow by the neutron detectors in the sub-critical core will be effective.

An experimental study on aerodynamic critical phenomenon of notch-back car (노치-백 자동차의 공기역학적 임계 현상에 관한 실험적 연구)

  • 배귀남
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.41-48
    • /
    • 1987
  • The aerodynamic critical phenomenon of notch-back type automobile-like bodies was investigated experimentally. The aerodynamic forces were measured for the various bodies of different back-light rake angle at R$_{e}$0.8*10$^{5}$ , 1.0*10$^{6}$ and 1.4*10$^{6}$ . Also, surface flow visualization was effected by the oil mixture. It was found that the critical phenomenon for the notch-back type bodies was milder than for the hatch-back type bodies; the drag vs. slant angle curve for the notch-back type bodies exhibiting local maximum was much smoother. Surface oil flow visualization revealed that the flow pattern associated with the critical phenomenon was characterized by the reattachment of the separated flow on the boot. The effect of the forebody on the critical phenomenon was seen to be negligible.e.

  • PDF

Stability Analysis of Multi-wall Carbon Nanotubes Conveying Fluid (유체유동에 의한 다중벽 탄소나노튜브의 안정성 해석)

  • Song, Oh-Seop;Yun, Kyung-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.593-603
    • /
    • 2010
  • In this paper, vibration and flow-induced flutter instability analysis of cantilever multi-wall carbon nanotubes conveying fluid and modelled as a thin-walled beam is investigated. Non-classical effects of transverse shear and rotary inertia and van der Waals forces between two walls are incorporated in this study. The governing equations and the associated boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extend Galerkin method which enables us to obtain more exact solutions compared with conventional Galerkin method. Cantilevered carbon nanotubes are damped with decaying amplitude for flow velocity below a certain critical value, however, beyond this critical flow velocity, flutter instability may occur. Variations of critical flow velocity with both radius ratio and length of carbon nanotubes are investigated and pertinent conclusion is outlined.

Vibration Stability Analysis of Multi wall Carbon Nanotubes Considering Conveying Fluid Effect (유체유동효과를 고려한 다중벽 탄소나노튜브의 진동 및 안정성 해석)

  • Yun, Kyung-Jae;Choi, Jong-Woon;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.219-224
    • /
    • 2012
  • In this paper, vibration and flow-induced flutter instability analysis of cantilever multiwall carbon nanotubes conveying fluid and modelled as a thin-walled beam is investigated. Non-classical effects of transverse shear and rotary inertia are incorporated in this study. The governing equations and the associated boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extend Galerkin method which enables us to obtain more exact solutions compared with conventional Galerkin method. Cantilevered carbon nanotubes are damped with decaying amplitude for flow velocity below a certain critical value, however, beyond this critical flow velocity, flutter instability may occur. Variations of critical flow velocity with both radius ratio and length of carbon nanotubes are investigated and pertinent conclusion is outlined.

  • PDF