Browse > Article
http://dx.doi.org/10.1016/j.net.2022.01.022

Beam-target configurations and robustness performance of the tungsten granular flow spallation target for an Accelerator-Driven Sub-critical system  

Cai, Han-Jie (Institute of Modern Physics, CAS)
Jia, Huan (Institute of Modern Physics, CAS)
Qi, Xin (Institute of Modern Physics, CAS)
Lin, Ping (Institute of Modern Physics, CAS)
Zhang, Sheng (Institute of Modern Physics, CAS)
Tian, Yuan (Institute of Modern Physics, CAS)
Qin, Yuanshuai (Institute of Modern Physics, CAS)
Zhang, Xunchao (Institute of Modern Physics, CAS)
Yang, Lei (Institute of Modern Physics, CAS)
He, Yuan (Institute of Modern Physics, CAS)
Publication Information
Nuclear Engineering and Technology / v.54, no.7, 2022 , pp. 2650-2659 More about this Journal
Abstract
The dense granular flow spallation target is a new target concept proposed for an Accelerator-Driven Sub-critical (ADS) system. In this paper, the beam-target configurations of a tungsten granular flow target for the ADS with a thermal power of 1 GW is explored. The beam profile options using different scanning methods are discussed. The critical geometry parameters are adjusted to investigate the performance of the granular target from the aspects of neutron efficiency, stability and temperature distribution in target medium. To figure out how the target under accident conditions would behave, different clogging conditions are induced in the simulation. The dynamic processes are analyzed and some important parameters such as abnormal temperature rise and beam cutoff time window are obtained. The response of the sub-critical reactor to a clogging accident is also investigated. It is indicated that the monitoring of the granular flow by the neutron detectors in the sub-critical core will be effective.
Keywords
Granular flow target; Accelerator-driven sub-critical system; Beam-target configurations; Accident conditions; Robustness performance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Riemer, J. Janney, S. Kaminskas, et al., Target operational experience at the spallation neutron source, Aug 5-8, in: Proceedings of the 11th International Topical Meeting on Nuclear Applications of Accelerators (AccApp 2013), Bruges, Belgium, 2013.
2 W. Cui, Z. He, Q. Zhao, et al., Temperature control for spallation target in accelerator driven system[J], Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 448 (2019) 5-10.   DOI
3 K. Yin, Z. He, W. Ma, et al., A non-intercepting monitoring method for beam position on the target in an accelerator driven system[J], Ann. Nucl. Energy 153 (2021) 108075.   DOI
4 K. Tsujimoto, T. Sasa, K. Nishihara, et al., Neutronics design for lead-bismuth cooled accelerator-driven system for transmutation of minor actinide, J. Nucl. Sci. Technol. 41 (1) (2004) 21-36.   DOI
5 Y. Tian, S. Zhang, P. Lin, Q. Yang, G. Yang, L. Yang, Implementing discrete element method for large-scale simulation of particles on multiple GPUs, Comput. Chem. Eng. 104 (2017) 231-240.   DOI
6 K. Haga, H. Kogawa, T. Wakui, et al., Technical investigation on small water leakage incident occurrence in mercury target of J-PARC, J. Nucl. Sci. Technol. 55 (2) (2018) 160-168.   DOI
7 J.F. Briesmeister, MCNP-A General Monte Carlo N-Particle Transport Code, 2000. Version 4C, Report LA-13709-M.
8 T. Davenne, P. Loveridge, R. Bingham, J. Wark, J.J. Back, O. Caretta, C. Densham, J. O'Dell, D. Wilcox, M. Fitton, Observed proton beam induced disruption of a tungsten powder sample at CERN, Phys. Rev. Accel. Beams 21 (2018), 073002, https://doi.org/10.1103/PhysRevAccelBeams.21.073002.   DOI
9 Y. Tian, P. Lin, H. Cai, et al., A fast and accurate GPU based method on simulating energy deposition for beam-target coupling with granular materials, Comput. Phys. Commun. (2021) 108104.
10 H.-J. Cai, F. Fu, J.-Y. Li, Code development and target station design for Chinese accelerator-driven system project, 183 (1), https://doi.org/10.13182/NSE15-59, 2016, 107.   DOI
11 M. Fukuda, S. Okumura, K. Arakawa, Simulation of spiral beam scanning for uniform irradiation on a large target, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 396 (1-2) (1997) 45-49.   DOI
12 H. Saugnac, et al., High energy beam line design of the 600 MeV 4mA proton linac for the Myrrha facility, in: Proc. 2nd IPAC Conf., 2011. San Sebastian, Spain.
13 C. Densham, O. Caretta, P. Loveridge, et al., The potential of fluidised powder target technology in high power accelerator facilities, in: Proceedings of PAC09, 2009. Vancouver, BC, Canada.
14 Yuri K. Batygin, Eric J. Pitcher, Advancement of LANSCE accelerator facility as a 1-MW fusion prototypic neutron source, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 960 (2020) 163569.   DOI
15 Y.K. Batygin, V.V. Kushin, S.V. Plotnikov, Uniform target irradiation by circular beam sweeping, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 363 (1-2) (1995) 128-130.   DOI
16 Y. Gohar, P.J. Finck, L. Krajtl, et al., Lead-bismuth Target Design for the Subcritical Multiplier (SCM) of the Accelerator Driven Test Facility (ADTF)[R], Argonne National Lab., IL (US), 2002.
17 H.-J. Cai, G. Yang, N. Vassilopoulos, S. Zhang, F. Fu, Y. Yuan, L. Yang, New target solution for a muon collider or a muon-decay neutrino beam facility: the granular waterfall target, Phys. Rev. Accel. Beams 20 (2) (2017), 023401.   DOI
18 T. McManamy, A. Crabtree, D. Lousteau, et al., Overview of the SNS target system testing and initial beam operation experience, J. Nucl. Mater. 377 (1) (2008) 1-11.   DOI
19 S.H. Hong, H.J. Ryu, Combination of mechanical alloying and two-stage sintering of a 93W-5.6Ni-1.4Fe tungsten heavy alloy, Mater. Sci. Eng., A 344 (1) (2003) 253-260, https://doi.org/10.1016/S0921-5093(02)00410-0.   DOI
20 J. Li, L. Gu, C. Yao, et al., Neutronic Study on a New Concept of Accelerator Driven Subcritical System in China[C]//International Conference on Nuclear Engineering, vol. 51470, American Society of Mechanical Engineers, 2018, V005T05A007.
21 M. Futakawa, K. Haga, T. Wakui, et al., Development of the Hg target in the JPARC neutron source, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 600 (1) (2009) 18-21.   DOI
22 C.D. Bowman, E.D. Arthur, P.W. Lisowski, et al., Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source, Nucl. Instrum. Methods Phys. Res. 320 (12) (1992) 336, https://doi.org/10.1016/0168-9002(92)90795-6.   DOI
23 O. Caretta, T. Davenne, C. Densham, M. Fitton, P. Loveridge, J. O'Dell, N. Charitonidis, I. Efthymiopoulos, A. Fabich, L. Rivkin, Response of a tungsten powder target to an incident high energy proton beam, Phys. Rev. Accel. Beams 17 (2014) 101005, https://doi.org/10.1103/PhysRevSTAB.17.101005.   DOI
24 L. Hu, Y. Zhang, G.H. Su, et al., Numerical study on cooling characteristics in granular and liquid spallation targets[J], Nucl. Eng. Des. 322 (2017) 474-484.   DOI
25 R. Chen, K. Guo, Y. Zhang, et al., Numerical analysis of the granular flow and heat transfer in the ADS granular spallation target[J], Nucl. Eng. Des. 330 (2018) 59-71.   DOI
26 Y. He, T. Tan, A. Wu, et al., Operation experience at CAFe, report on 2021 international conference on RF superconductivity (SRF2021), in: Virtual Conference June 28-July 2, 2021. https://indico.frib.msu.edu/event/38/page/356-conference-program.
27 T. Mora, F. Sordo, A. Aguilar, et al., An evaluation of activation and radiation damage effects for the European Spallation Source Target[J], J. Nucl. Sci. Technol. 55 (5) (2018) 548-558.   DOI
28 G.S. Bauer, Y. Dai, W. Wagner, SINQ layout, operation and R&D to high power, J. Phys. IV - Proc. EDP Sci. 12 (8) (2002) 3-26.
29 J. Mach, K. Johns, S. Gorti, et al., Fatigue analysis of the spallation neutron source 2 MW target design[J], in: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, p. 165481.
30 C.H. Cho, T.Y. Song, N.I. Tak, Numerical design of a 20 MW leadebismuth spallation target for an accelerator-driven system, Nucl. Eng. Des. 229 (2) (2004) 317-327.   DOI
31 Y. Zhang, J. Li, X. Zhang, et al., Neutronics performance and activation calculation of dense tungsten granular target for China-ADS, Nucl. Instrum. Methods Phys. Res. B 410 (2017) 88, https://doi.org/10.1016/j.nimb.2017.08.003.   DOI
32 O. Caretta, et al., Proton beam induced dynamics of tungsten granules, Phys. Rev. Accel. Beams 21 (3) (2018), 033401, https://doi.org/10.1103/PhysRevAccelBeams.21.033401.   DOI
33 F. Akhtar, An investigation on the solid state sintering of mechanically alloyed nano-structured 90W-Ni-Fe tungsten heavy alloy, Int. J. Refract. Met. Hard 26 (2008) 145-151, https://doi.org/10.1016/j.ijrmhm.2007.05.011.   DOI
34 X. Zhang, L. Yu, X. Yan, et al., The optimization on neutronic performance of the granular spallation target by using low-density porous tungsten[J], Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 916 (2019) 22-31.   DOI
35 T.W. Davies, O. Caretta, C.J. Densham, R. Woods, The production and anatomy of a tungsten powder jet, Powder Technol. 201 (3) (2016) 296-300.   DOI
36 Mol, Belgium P. Schuurmans, et al., Design and supporting R&D for the XTADS spallation target, 6-9 May, in: Proc. Of the Fifth Workshop on Utilisation and Reliability of High Power Proton Accelerators (HPPA5), 2007.
37 L. Yang, W.-L. Zhan, New concept for ads spallation target: gravity-driven dense granular flow target, Sci. China Technol. Sci. 58 (2015) 1705, https://doi.org/10.1007/s11431-015-5894-0.   DOI
38 O. Caretta, C.J. Densham, T.W. Davies, et al., Preliminary experiments on a fluidised powder target, Proceedings of EPAC08, 2008, Genoa, Italy (2008) 2862-2864.
39 J. Li, Y. Zhang, X. Zhang, et al., Neutronics analysis of uranium compounds spallation target using Monte Carlo simulation, Nucl. Eng. Des. 324 (2017) 202, https://doi.org/10.1016/j.nucengdes.2017.08.033.   DOI
40 L. Pang, P. Tai, T. Shen, et al., Study on collective friction and wear behavior of W-Ni-Fe alloy balls[J], Tribol. Int. 164 (2021) 107232.   DOI
41 L. Gu, L. Chen, Q. Zhou, et al., Measurement of tungsten granular target worth on VENUS-II light water reactor and validation of the granular target model[J], Ann. Nucl. Energy 150 (2021) 107825.   DOI
42 I.B.a. Slessarev, A.F. Briesmeister, IAEA ADS-BENCHMARK (Stage 1) Results and Analysis, TCM-Meeting, Madrid, 1997.
43 P. Lin, S. Zhang, X. Zhang, Y. Tian, L. Yang, Simulation of Heat Transfer in Granular Systems with DEM on GPUs, Springer, Singapore, 2017.
44 C. Fazio, F. Groschel, W. Wagner, et al., The MEGAPIE-TEST project: supporting research and lessons learned in first-of-a-kind spallation target technology, Nucl. Eng. Des. 238 (6) (2008) 1471-1495.   DOI
45 T. Sasa, K. Tsujimoto, T. Takizuka, H. Takano, Code development for the design study of the OMEGA Program accelerator-driven transmutation systems, Nucl. Instrum. Methods Phys. Res. 463 (3) (2001) 495-504.   DOI
46 H.J. Cai, Z.L. Zhang, F. Fu, et al., Toward high-efficiency and detailed Monte Carlo simulation study of the granular flow spallation target, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 882 (2018) 117-123.   DOI
47 A. Ghiglino, M. Magan, A. Zarraoa-Garmendia, et al., Tests on the SNS rotating target design at the RTFT (ESS BILBAO)[J], Phys. Procedia 60 (2014) 151-156.   DOI
48 K. Jones, Technological challenges in the path to 3.0 MW at the SNS accelerator, in: North American Particle Accelerator Conf.(NAPAC'16), Chicago, IL, USA, October 9-14, 2016, JACOW, Geneva, Switzerland, 2017, pp. 246-250.
49 G.S. Bauer, Overview on spallation target design concepts and related materials issues, J. Nucl. Mater. 398 (1-3) (2010) 19-27.   DOI
50 G.S. Bauer, M. Salvatores, G. Heusener, MEGAPIE, a 1 MW pilot experiment for a liquid metal spallation target, J. Nucl. Mater. 296 (1) (2001) 17-33.   DOI
51 L. Ma, X. Zhang, S. Zhang, et al., Validation of the idea of granular flow target: a beam coupling test[J], Nucl. Eng. Des. 330 (2018) 289-296.   DOI
52 W. Wagner, F. Groschel, K. Thomsen, et al., MEGAPIE at SINQ-The first liquid metal target driven by a megawatt class proton beam, J. Nucl. Mater. 377 (1) (2008) 12-16.   DOI
53 S. Henderson, Spallation Neutron Source progress, challenges and upgrade options, in: Proceedings of EPAC08, Genoa, Italy, 2008.
54 T. Kai, Y. Kasugai, M. Ooi, et al., Experiences on Radioactivity Handling for Mercury Target System in MLF/J-PARC, 2014.
55 S. Meigo, M. Ooi, M. Harada, et al., Radiation damage and lifetime estimation of the proton beam window at the Japan Spallation Neutron Source, J. Nucl. Mater. 450 (1) (2014) 141-146.   DOI
56 T. Wakui, E. Wakai, H. Kogawa, et al., New design of high power mercury target vessel of J-PARC, Mater. Sci. Forum 1024 (2021) 145-150. https://doi.org/10.4028/www.scientific.net/msf.1024.145.   DOI
57 H.A. Abderrahim, P. Baeten, D. De Bruyn, et al., MYRRHA, a multipurpose hybrid research reactor for high-end applications, Nucl. Phys. News 20 (1) (2010) 24-28.   DOI
58 J. Engelen, H.A. Abderrahim, P. Baeten, et al., MYRRHA: preliminary front-end engineering design[J], Int. J. Hydrogen Energy 40 (44) (2015) 15137-15147.   DOI