• 제목/요약/키워드: Critical current density ($J_c$)

검색결과 192건 처리시간 0.031초

Preparation of Submicron YBaCuO Powder by Sol-gel Method

  • Fan, Zhanguo;Soh, Dea-Wha
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.557-560
    • /
    • 2003
  • The submicron $YBa_2Cu_3O_x$ powder was prepared by the sol-gel method. The particle size is distributed from 0.2 to $1.0\;{\mu}m$, which benefits to eliminate the micro-cracks formed in the $YBa_2Cu_3O_x$ films deposited by electrophoresis. The powder was single phase of $YBa_2Cu_3O_x$ examined by X-ray diffraction. In the sol-gel process the citrate gel was formed from citric acid and nitrate solution of $Y_2O_3$, $Ba(NO_3)O_2$ and CuO. When pH values were adjusted to $6.4{\sim}6.7,\;Ba(NO_3)O_2$ could be dissolved in the citrate solution completely. Appropriate evaporative temperature of the sol-gel formation is discussed. After the heat treatment the transition temperature($T_c$) and critical current density($J_c$) of the $YBa_2Cu_3O_x$ samples made of the submicron powder were measured.

  • PDF

Bi2223 초전도후막의 전기영동전착 특성 (Electrophoretic deposition of Bi2223 Superconductor Thick Film)

  • 전용우;소대화;최성재;박정철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.97-100
    • /
    • 2004
  • In this paper, the preparation of BSCCO superconducting wire by electrophoretic deposition method and the effect of suspension medium used with various solvent solutions of ethanol and buthanol for electrophoretic deposition were studied. The preheating technique in vacuum system for the superconducting powders coated on Ag wire was also investigated. As a result, it was confirmed that the preheating technique was very useful to remove the influence of remains affected to the surface conditions of superconducting wire. And the adsorbed solvent solution which was existed between and on the deposited particle surfaces was almost disappeared at the treating conditions of about $10^{-3}$ Torr and around $200^{\circ}C$ in bell-jar system. By measurement of 4-point prove method, the critical current density($J_c$) of BSCCO superconducting wire was obtained at the value of more than $10^4\;A/cm^2$ in liquid $N_2$(77 K, 0 T).

  • PDF

고상반응법으로 합성한 분말로부터 Gd1.5Ba2Cu3O7-y 벌크 초전도체의 제조 (Fabrication of Gd1.5Ba2Cu3O7-y Bulk Superconductors from the Powder Synthesized by a Solid-State Reaction Method)

  • 김용주;박승연;유병윤;박순동;김찬중
    • 한국재료학회지
    • /
    • 제23권6호
    • /
    • pp.309-315
    • /
    • 2013
  • $GdBa_2Cu_3O_{7-y}$(Gd123) powders were synthesized by the solid-state reaction method using $Gd_2O_3$ (99.9% purity), $BaCO_3$ (99.75%) and CuO (99.9%) powders. The synthesized Gd123 powder and the Gd123 powder with $Gd_2O_3$ addition ($Gd_{1.5}Ba_2Cu_3O_{7-y}$(Gd1.5)) were used as raw powders for the fabrication of Gd123 bulk superconductors. The Gd123 and Gd1.5 bulk superconductors were fabricated by sintering or a top-seeded melt growth (TSMG) process. The superconducting transition temperature ($T_{c,onset}$) of the sintered Gd123 was 93 K and the transition width was as large as 20 K. The $T_{c,onset}$ of the TSMG processed Gd123 was 82 K and the transition width was also as large as 12 K. The critical current density ($J_c$) at 77 K and 0 T of the sintered Gd123 and TSMG processed Gd123 were as low as a few hundreds A/$cm^2$. The addition of 0.25 mole $Gd_2O_3$ and 1 wt.% $CeO_2$ to Gd123 enhanced the $T_c$, $J_c$ and magnetic flux density (H) of the TSMG processed Gd123 sample owing to the formation of the superconducting phase with high flux pinning capability. The $T_c$ of the TSMG processed Gd1.5 was 92 K and the transition width was 1 K. The $J_cs$ at 77 K (0 T and 2 T) were $3.2{\times}10^4\;A/cm^2$ and $2.5{\times}10^4\;A/cm^2$, respectively. The H at 77 K of the TSMG-processed Gd1.5 was 1.96 kG, which is 54% of the applied magnetic field (3.45 kG).

Sinter forging으로 제조한 Y-BA-Cu-O/Ag 고온 초전도 복합체의 미세조직과 특성 (A Study on the Microstructure and Properties of Y-BA-Cu-O/Ag composite High $T_{c}$ Superconductor prepared by Sinter-forging Process)

  • 박종현;김병철;송진태
    • 한국재료학회지
    • /
    • 제4권1호
    • /
    • pp.37-43
    • /
    • 1994
  • Y-BA-Cu-O계 고온초전도체의 미세조직을 가공과 열처리로써 제어하여 조직의 배향화와 치밀화를 기하여 높은 임계전류밀도($J_c$)를 갖는 초전도체의 개발을 목적으로sinter forging법으로 Y-BA-Cu-O/Ag 고온초전도복합체를 제조하였다. sinter forging을 통하여 고온 초전도체의 미세조직의 texture화를 가져왔으며, 이 경우 (123)결정립의 C축 방위가 단일축의 압축방향으로 배향화 되었다. 한편, texture의 orientation facter는 고온일수록, 압력이 클수록 크고, 조직의 배향화도 뚜렷하였으며 그에 따라 $J_c$역시 증가하였다. 이러한 결과로 미루어 결정의 배향도는 $J_c$를 좌우하는 중요한 변수라고 사려되었다. 또한 sinter forging 시킨Y-MA-Cu-O/Ag 복합체의 on set온도는 sinter forging온도에 크게 의존치 않았으나, 고온일수록 off set 온도($T_c\;^{zero}$)가 다소 떨어졌다. 한편, 첨가된 Ag는 주고(123)결정입계에 존재하였으며, 이들이 (123)결정립간의 결합을 촉진시켜 임계전류밀도를 크게 향상시켰으며, Y-BA-Cu-O/Ag 복합체의 $J_c$는 2,000 A/$\textrm{cm}^2$ 이상이었다.

  • PDF

IBAD-MgO 기판을 이용한 GdBCO 초전도 박막선재의 제조 (Fabrication of GdBCO Coated conductor using IBAD-MgO substrate)

  • 하홍수;이정훈;오재근;고락길;김호섭;하동우;오상수;김호겸;양주생;정승욱;문승현;박찬;유상임;염도준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.44-44
    • /
    • 2008
  • GdBCO coated conductor have been fabricated using reactive co-evaporation. The batch type co-deposition system was specially designed and was named EDDC (evaporation using drum in dual chamber) that is possible to deposit superconducting layer with optimum composition ratio of materials at temperature over $700^{\circ}C$ and several mTorr of oxygen. The IBAD-MgO substrate with the architecture of LaMnO3(LMO)/IBAD-MgO/Hastelloy was used for coated conductor. In this study, GdBCO superconducting layer was deposited on IBAD-MgO substrate at optimal oxygen partial pressure (pO2) and deposition temperature. After fabrication of GdBCO coated conductor, critical current density was measured by 4-probe method. Surface morphology and texture of GdBCO coated conductors were analyzed by the SEM and XRD, respectively.

  • PDF

동시 열증발법으로 제조한 SmBCO 고온 초전도에서 박막 조성비가 표면형상 및 초전도 특성에 미치는 영향 (The effect of composition ratio on the surface morphology and superconducting properties of SmBCO films prepared by thermal co-evaporation method)

  • 이남진;김호섭;하홍수;고락길;송규정;하동우;양주생;김태형;정예현;염도준;문승현;박찬;오상수
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권1호
    • /
    • pp.5-8
    • /
    • 2007
  • We have investigated the superconducting properties and surface morphology of $Sm_xBa_yCu_3O_{6+z}$ thin films deposited on LMO/IBAD-MgO/Hastelloy which prepared with different composition ratio by co-evaporation method(EDDC, Evaporation using Drum in Dual Chambers). We observed the composition ratio of SmBCO thin films by EDS analysis. We fabricated SmBCO thin film with critical current density of $1.5{\times}10^6A/cm^2$ at composition ratio of SM:Ba:Cu=1.10:2.01:3(at 77 K self-field). And, we confirmed that substitution of Sm-Ba did not occur at Cu rich phase by EDS analysis.

IBAD template용 니켈 합금의 연속 전해연마 (Reel-to-reel electropolishing of Ni alloy tapes for IBAD template)

  • 하홍수;김호겸;고락길;김호섭;송규정;박찬;유상임;주진호;문승현
    • Progress in Superconductivity
    • /
    • 제6권1호
    • /
    • pp.69-73
    • /
    • 2004
  • Ni alloy tape is electropolished to be used as a metal substrate for fabrication of IBAD (ion-Beam Assisted Deposition)-MgO texture template fur HTS coated conductor. Electropolishing is needed to obtain a very smooth surface of Ni alloy tape because the in-plane texture of templates is sensitive to the roughness of metal substrate. The critical current of YBCO coated conductor depends on the texture of YBCO that depends on the texture of the IBAD MgO layer. And so the smoothness of the metal substrate is directly related to the superconducting properties of the coated conductor. In this study, we have prepared a reel-to-reel electropolishing apparatus to polish the Ni alloy tapes for IBAD. Various electropolishing conditions were investigated to improve the surface roughness. Hastelloy tape is continuously electropolished with high polishing current density (0.5 ∼ 2 A/$\textrm{cm}^2$) and fast processing time (1 ∼ 3 min). Polished hastelloy tapes have surface roughness(RMS) of below 1 nm on a 5 ${\times}$ 5 $\mu\m^2$ from AFM and SEM.

  • PDF

분말 반응법에 의한 YBa2Cu3O7-y 합성과 벌크 초전도체의 제조 (Synthesis of YBa2Cu3O7-y Powder using a Powder Reaction Method and Fabrication of the Bulk Superconductors)

  • 전영주;박승연;유병윤;박순동;김찬중
    • 한국분말재료학회지
    • /
    • 제20권2호
    • /
    • pp.142-147
    • /
    • 2013
  • $YBa_2Cu_3O_{7-y}$ (Y123) powders for the fabrication of bulk superconductors were synthesized by the powder reaction method using $Y_2O_3$ (99.9% purity), $BaCO_3$ (99.75%) and CuO (99.9%) powders. The raw powders were weighed to the cation ratio of Y:Ba:Cu=1:2:3, mixed and calcined at $880^{\circ}C-930^{\circ}C$ in air with intermediate repeated crushing steps. It was found that the formation of Y123 powder was more sensitive to reaction temperature than reaction time. The calcined Y123 powder and a mixture of (Y123 + 0.25 mole $Y_2O_3$ + 1 wt.% $CeO_2$, $Y_{1.5}Ba_2Cu_3O_x$ (Y1.5)) were used as raw powders for the fabrication of poly-grain or single grain superconductors. The superconducting transition temperature ($T_{c,onset}$) of the sintered Y123 sample was 91 K and the transition width was as large as 11 K, whereas the $T_{c,onset}$ of the melt-grown Y1.5 sample was 90.5 K and the transition width was 3.5 K. The critical current density ($J_c$) at 77 K and 0 T of the sintered Y123 was 700 $A/cm^2$, whereas the $J_c$ of the top-seeded melt growth (TSMG) processed Y1.5 sample was $3.2{\times}10^4\;A/cm^2$. The magnetic flux density (H) at 77 K of the TSMG-processed Y123 and Y1.5 sample showed the 0.53 kG and 2.45 kG, respectively, which are 15% and 71% of the applied magnetic field of 3.5 kG. The high H value of the TSMG-processed Y1.5 sample is attributed to the formation of the larger superconducting grain with fine Y211 dispersion.

Synthesis and Structural Properties of YBa2Cu3O7-x Films/ZnO Nanorods on SrTiO3 Substrates

  • Jin, Zhenlan;Park, C.I.;Song, K.J.;Han, S.W.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.169-169
    • /
    • 2012
  • The high-temperature superconductor YBa2Cu3O7-x (YBCO) have attached attentions because of a high superconducting transition temperature, low surface resistance, high superconducting critical current density (Jc), and superior superconducting capability under magnetic field. Moreover, the Jc of YBCO superconductors can be enhanced by adding impurities to the YBCO films for vortex-pinning. Understanding and controlling pinning centers are key factors to realize high Jc superconductors. We synthesized vertically-aligned ZnO nanorods on SrTiO3 (STO) substrates by catalyst-free metal-organic chemical vapor deposition (MOCVD), and subsequently, deposited YBCO films on the ZnO nanorods/STO templates using pulsed laser deposition (PLD). The various techniques were used to analyze the structural and interfacial properties of the YBCO/ZnO nanorods/STO hybrid structures. SEM, TEM, and XRD measurements demonstrated that YBCO films on ZnO nanorods/STO were well crystallized with the (001) orientation. EXAFS measurements from YBCO/ZnO nanorods/STO at Cu K edge demonstrated that the local structural properties around Cu atoms in YBCO were quite similar to those of YBCO/STO.

  • PDF

CeO$_2$ 완충층이 사파이어 기판에 성장된 YBCO 박막의 임계전류에 미치는 영향 (Effects of CeO$_2$ Buffer Layer on Critical Current of YBCO Thin Films grown on Sapphire Substrate)

  • 임해용;김인선;김동호;박용기;박종철
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 1999년도 High Temperature Superconductivity Vol.IX
    • /
    • pp.142-146
    • /
    • 1999
  • CeO$_2$ buffer layers and in-situ YSa$_2Cu_3O_{7-{\delta}}$ (YBCO) thin films were grown by pulsed laser deposition method on R-plane sapphire substrates. Superconducting properties and surface morphologies of YBCO thin films exhibit strong dependence on the crystallinity of CeO$_2$ buffer layer. The best a-axis oriented CeO$_2$ buffer layers could be grown at 800 $^{\circ}C$ of deposition temperature, 1.5 J/ cm$^2$ of laser energy density and 50 mTorr of oxygen pressure. The YBCO thin films on the a-axis CeO$_2$ buffer layer have Tc (R=0) ${\ge}$ 89.5 K, ${\delta}$Tc ${\sim}$ 0.5 K, and Jc ${\ge}$ 3.2 ${\times}$ 10$^6$ A/ cm$^2$ at 77 K.

  • PDF