• Title/Summary/Keyword: Critical Structure

Search Result 2,354, Processing Time 0.029 seconds

Critical Fluid Velocity of Fluid-conveying Cantilevered Cylindrical Shells with Intermediate Support (중간 지지된 유체 유동 외팔형 원통셸의 임계유속)

  • Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.5
    • /
    • pp.422-429
    • /
    • 2011
  • The critical fluid velocity of cantilevered cylindrical shells subjected to internal fluid flow is investigated in this study. The fluid-structure interaction is considered in the analysis. The cantilevered cylindrical shell is supported intermediately at an arbitrary axial position. The intermediate support is simulated by two types of artificial springs: translational and rotational spring. It is assumed that the artificial springs are placed continuously and uniformly on the middle surface of an intermediate support along the circumferential direction. The steady flow of fluid is described by the classical potential flow theory. The motion of shell is represented by the first order shear deformation theory (FSDT) to account for rotary inertia and transverse shear strains. The effect of internal fluid can be considered by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. Numerical examples are presented and compared with existing results.

A Research for apportionment ratio of Roof Load in Traditional Wooden Structure's Dori (전통건축물에서 도리의 지붕하중 분담비율에 관한 연구)

  • Hwang, Jong-Kook
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.247-250
    • /
    • 2007
  • In korean traditional wooden structure, to know the critical pass of roof load transmission is very important. to know the critical pass of roof load transmission and to find the role of each dori members, used loading block and load cell. The total weight of loading blocks was 5,8880 N and the number of loading blocks were 16, The experimental fran1e has 1/2 scale. From middle-dori to outside-dori, the linearity of line can't guarantee. So, the distribution of roof load in dori is effected by the initial state of dori. In this research, to remove the effect of initial state, initial deformation was allowed by initial setting.

  • PDF

Mathematical modeling of concrete pipes reinforced with CNTs conveying fluid for vibration and stability analyses

  • Nouri, Alireza Zamani
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.325-331
    • /
    • 2017
  • In this study, vibration and stability of concrete pipes reinforced with carbon nanotubes (CNTs) conveying fluid are presented. Due to the existence of CNTs, the structure is subjected to magnetic field. The radial fore induced with fluid is calculated using Navier-Stokes equations. Characteristics of the equivalent composite are determined using Mori-Tanaka model. The concrete pipe is simulated with classical cylindrical shell model. Employing energy method and Hamilton's principal, the motion equations are derived. Frequency and critical fluid velocity of structure are obtained analytically based on Navier method for simply supported boundary conditions at both ends of the pipe. The effects of fluid, volume percent of CNTs, magnetic field and geometrical parameters are shown on the frequency and critical fluid velocity of system. Results show that with increasing volume percent of CNTs, the frequency and critical fluid velocity of concrete pipe are increased.

NOTES ON CRITICAL ALMOST HERMITIAN STRUCTURES

  • Lee, Jung-Chan;Park, Jeong-Hyeong;Sekigawa, Kouei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.167-178
    • /
    • 2010
  • We discuss the critical points of the functional $F_{\lambda,\mu}(J,g)=\int_M(\lambda\tau+\mu\tau^*)d\upsilon_g$ on the spaces of all almost Hermitian structures AH(M) with $(\lambda,\mu){\in}R^2-(0,0)$, where $\tau$ and $\tau^*$ being the scalar curvature and the *-scalar curvature of (J, g), respectively. We shall give several characterizations of Kahler structure for some special classes of almost Hermitian manifolds, in terms of the critical points of the functionals $F_{\lambda,\mu}(J,g)$ on AH(M). Further, we provide the almost Hermitian analogy of the Hilbert's result.

Critical earthquake loads for SDOF inelastic structures considering evolution of seismic waves

  • Moustafa, Abbas;Ueno, Kohei;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.1 no.2
    • /
    • pp.147-162
    • /
    • 2010
  • The ground acceleration measured at a point on the earth's surface is composed of several waves that have different phase velocities, arrival times, amplitudes, and frequency contents. For instance, body waves contain primary and secondary waves that have high frequency content and reach the site first. Surface waves are composed of Rayleigh and Love waves that have lower phase velocity, lower frequency content and reach the site next. Some of these waves could be of more damage to the structure depending on their frequency content and associated amplitude. This paper models critical earthquake loads for single-degree-of-freedom (SDOF) inelastic structures considering evolution of the seismic waves in time and frequency. The ground acceleration is represented as combination of seismic waves with different characteristics. Each seismic wave represents the energy of the ground motion in certain frequency band and time interval. The amplitudes and phase angles of these waves are optimized to produce the highest damage in the structure subject to explicit constraints on the energy and the peak ground acceleration and implicit constraints on the frequency content and the arrival time of the seismic waves. The material nonlinearity is modeled using bilinear inelastic law. The study explores also the influence of the properties of the seismic waves on the energy demand and damage state of the structure. Numerical illustrations on modeling critical earthquake excitations for one-storey inelastic frame structures are provided.

Strategy of Critical Materials Management in the World (세계(世界) Critical materials 관리(管理)를 위한 전략(戰略))

  • Kim, Yu Jeong
    • Resources Recycling
    • /
    • v.22 no.5
    • /
    • pp.3-12
    • /
    • 2013
  • It is necessary to manage risk of metals which are has rigid supply structures and expected demand expansion, considering to industry structure and resource securing capacity of each country. Countries conducted various criticality analyses and selected mainly rare metals as critical materials(or Critical metals or Critical raw materials). This study examined cases of metals risk evaluation and management which are based on technology changes and imbalance supply-demand. EU and U.S.A evaluated risk on metals needed as supply expansion of renewable energy. Japan forecasted demand of rare metals needed in Japan's growth engine industry. U.K analyzed criticality of metals, considering environmental burden occurred from mining to refining. Critical materials has features such as weak price signal, inelastic supply structure, demand volatility in technology change.

Characteristics of Static Buckling Load of the Hexagonal Spatial Truss Models using Timber (목재를 이용한 육각형 공간 트러스 모델의 정적좌굴하중 특성)

  • Ha, Hyeonju;Shon, Sudeok;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.3
    • /
    • pp.25-32
    • /
    • 2022
  • In this paper, the instability of the domed spatial truss structure using wood and the characteristics of the buckling critical load were studied. Hexagonal space truss was adopted as the model to be analyzed, and two boundary conditions were considered. In the first case, the deformation of the inclined member is only considered, and in the second case, the deformation of the horizontal member is also considered. The materials of the model adopted in this paper are steel and timbers, and the considered timbers are spruce, pine, and larch. Here, the inelastic properties of the material are not considered. The instability of the target structure was observed through non-linear incremental analysis, and the buckling critical load was calculated through the singularities and eigenvalues of the tangential stiffness matrix at each incremental step. From the analysis results, in the example of the boundary condition considering only the inclined member, the critical buckling load was lower when using timber than when using steel, and the critical buckling load was determined according to the modulus of elasticity of timber. In the case of boundary conditions considering the effect of the horizontal member, using a mixture of steel and timber case had a lower buckling critical load than the steel case. But, the result showed that it was more effective in structural stability than only timber was used.

Influential Parameters on Offshore Jacket Structure Launching (해양 자켓구조물 진수 영향인자에 대한 고찰)

  • 조철희;김경수;김재환;이수훈
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.141-147
    • /
    • 2001
  • The launching process is one of the most critical operations for large structure in offshore installation. Since as the size increases it limits the availability of offshore crane facilities, the large jacket structures are often installed by launching. As the structure approaches to tilt beam, it reaches critical load, and there are parameters to affect on launching procedure. The major influential parameters are trim, draft of barge, center of gravity, center of buoyancy and reserved buoyancy of jacket. As increasing of trim and draft, structural loads tend to decrease. The trim is found to be more contributing than draft on structural loads. Therefore the trim should be increased so as to decrease structural loads and to avoid stalling of structure and submergence of stern. During the launching process, the distance between jacket and seabed should be investigated which differs from the amount of reserved buoyancy and launching condition of barge. In this paper the effects of parameters on launching process are numerically investigated.

  • PDF

Co-evolutionary Structural Design Framework: Min(Volume Minimization)-Max(Critical Load) MDO Problem of Topology Design under Uncertainty (구조-하중 설계를 고려한 공진화 구조 설계시스템)

  • 양영순;유원선;김봉재
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.281-290
    • /
    • 2003
  • Co Evolutionary Structural Design(CESD) Framework is presented, which can deal with the load design and structural topology design simultaneously. The load design here is the exploration algorithm that finds the critical load patterns of the given structure. In general, the load pattern is a crucial factor in determining the structural topology and being selected from the experts어 intuition and experience. However, if any of the critical load patterns would be excluded during the process of problem formation, the solution structure might show inadequate performance under the load pattern. Otherwise if some reinforcement method such as safety factor method would be utilized, the solution structure could result in inefficient conservativeness. On the other hand, the CESD has the ability of automatically finding the most critical load patterns and can help the structural solution evolve into the robust design. The CESD is made up of a load design discipline and a structural topology design discipline both of which have the fully coupled relation each other. This coupling is resolved iteratively until the resultant solution can resist against all the possible load patterns and both disciplines evolve into the solution structure with the mutual help or competition. To verify the usefulness of this approach, the 10 bar truss and the jacket type offshore structure are presented. SORA(Sequential Optimization & Reliability Assessment) is adopted in CESD as a probabilistic optimization methodology, and its usefulness in decreasing the computational cost is verified also.

Models and Modeling Behavior: A Look at the Critical Thinking Skills of Biology Majors

  • Partosa, Jocelyn D.
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.8
    • /
    • pp.1281-1294
    • /
    • 2012
  • This paper describes the types of models that biology majors use and how they go about making their models in learning key concepts in biology such as the cell membrane, cytoskeleton and cell structure. Initially, a total of 44 biology students from all year levels enrolled in the second semester of calendar year 2008-2009 were asked to make their respective models of the cell membrane, cytoskeleton and cell structure. They were also asked to answer an open-ended questionnaire. Of the 44, only 20 (five from each year level) were randomly selected for a one-on-one interview. Results showed that the student-generated models from all year levels were mostly analogies, some textbook definitions and occasional drawings. In making their model, students first read the text; second, outline similarities in structure and function or both; and third, make the model. Data suggest that models are good diagnostic tools for identifying critical thinking skills of students. In this case, students mostly demonstrate the ability to recognize similarities in structure and function between the concept and their model. Some senior students demonstrated integration and reflective thinking in making their models. Thus, more opportunities for student-generated models must be available if students were to develop integration and reflective thinking in their models.