• Title/Summary/Keyword: Critical Flow Function

Search Result 139, Processing Time 0.027 seconds

Analysis of Critical Time Headway and Capacity for Freeway Merging Area (고속도로 합류부 임계차두간격 및 용량 산정에 관한 연구)

  • 최재성;이승준
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.6
    • /
    • pp.195-205
    • /
    • 2001
  • The objective of the paper is to analyze the traffic characteristics for freeway merging area. Freeway merging area is different from basic section due to ramp vehicles. Therefore, to understand the traffic characteristics of (leeway merging area, this study focused on two factors including critical time headway required in merging maneuver and maximum possible merging volume. In this paper, new model that adopts critical time headway instead of critical time gap in calculating the maximum possible merging volume based on probability function was developed In previous studies, for calculating the maximum possible merging volume, it was considered that merging vehicles could merge freely if a given time gap was greater than the critical time gap. Also, the critical time gap was used as the same value in all traffic flow conditions. But, a time gap required in merging maneuver could be changed, even to the same driver, because difference of relative speed varies in different traffic flow conditions. So, in some cases, the critical time gap could be insufficient value in merging maneuver. Therefore, in this study. a calculating procedure for critical time headway in all traffic flow conditions was presented. Also, the maximum possible merging volume and capacity for freeway merging area were calculated by using the previously found critical time headway.

  • PDF

A Turbulent Boundary Layer Disturbed by an Elliptic Cylinder (타원형 실린더에 의해 교란되어진 난류경계층에 관한 실험적 연구)

  • Choe, Jae-Ho;Jo, Jeong-Won;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1476-1482
    • /
    • 2001
  • Turbulent boundary layer over a flat plate was disturbed by installing an elliptic cylinder with an axis ratio of AR=2. For comparison, the same experiment was carried out for a circular cylinder having the same vertical height. The surface pressure and the heat transfer coefficient on the flat plate were measured with varying the gap distance between the elliptic cylinder and the flat plate. The mean velocity and the turbulent intensity profile of the streamwise velocity component were measured using a hot-wire anemometry. As a result, the flow structure and the local heat transfer rate were modified by the interaction between the cylinder wake and the turbulent boundary layer as a function of the critical gap ratio where the regular vortices start to shed. For the elliptic cylinder, the critical gap ratio is increased and the surface pressure on the flat plate is recovered rapidly at downstream location, compared with the equivalent circular cylinder. The maximum heat transfer rate occurs at the gap ratio of G/B = 0.5, where the flow interaction between the lower shear layer of the cylinder wake and the turbulent boundary layer is strong.

Study on the Stability of Cantilevered Pipe Conveying Fluid Subjected to Distributed Follower Force (분포종동력을 받는 외팔 송수관의 안정성에 관한 연구)

  • Kong, Chang-Duk;Park, Yo-Chang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.27-34
    • /
    • 2005
  • The paper discussed on the stability of cantilevered pipe conveying fluid subjected to distributed follower force. Governing equations of motion are derived by extended Hamilton's principle, and the numerical scheme using finite element method is applied to obtain the discretized equations. The critical flow velocity as a function of the distributed follower force for the various mass ratio is determined. The flutter configurations of the pipes at the critical flow velocities are drawn graphically at every twelfth period to define the order of quasi-mode of flutter configuration The critical mass ratios, at which the transference of the eigenvalue branches related to flutter take place, are definitely determined. Also, the effect of damping on the stability of the system is considered.

A CFD Prediction of a Micro Critical Nozzle (마이크로 임계노즐 유동의 CFD 예측)

  • 김재형;김희동;박경암
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.2
    • /
    • pp.7-14
    • /
    • 2003
  • Computational work using the axisymmetric, compressible, Navier-Stokes Equations is carried out to predict the discharge coefficient of mass flow through a micro-critical nozzle. Several kinds of turbulence models and wall functions are employed to validate the computational predictions. The computed results are compared with the previous experimented ones. The present computations predict the experimental discharge coefficients with a reasonable accuracy. It is found that the standard $\kappa$-$\varepsilon$turbulence model with the standard wall function gives a best prediction of the discharge coefficients. The displacement thickness of the nozzle wall boundary layer is evaluated at the nozzle throat and is well compared to a prediction obtained by an empirical equation. The resulting displacement thickness of the wall boundary layer is about 2% to 0.6% of the diameter of the nozzle throat for the Reynolds numbers of 2000 to 20000.

Inappropriate Peak Inspiratory Flow Rate in the Patients with Stable Chronic Obstructive Pulmonary Disease in Korea

  • Seong Hwan Youn;Hyun Jung Kim;Jae Seok Park;Sun Hyo Park;Yong Shik Kwon;Mi-Ae Kim
    • Tuberculosis and Respiratory Diseases
    • /
    • v.87 no.4
    • /
    • pp.458-464
    • /
    • 2024
  • Background: While inhalation therapy efficacy hinges on attaining proper peak inspiratory flow rate (PIFR), the prevalence of inappropriate PIFR among patients with chronic obstructive pulmonary disease (COPD) remains unstudied in Korea. This study aimed to assess the prevalence of inappropriate PIFR, its correlation with COPD assessment test (CAT) scores, and factors associated with suboptimal PIFR. Methods: We enrolled 108 patients with COPD who had been using the same inhaler for at least 1 year without exacerbations. PIFR was measured using an inspiratory flow meter (In-Check DIAL G16). Demographic, clinical, pulmonary function, and CAT score data were collected. Inappropriate was defined as PIFR <60 L/min for dry power inhaler (DPI) users, and >90 L/min for aerosol device users. Results: The cohort comprised 87 (80.6%) men, mean age 71.0±8.5 years, with mean post-bronchodilator forced expiratory volume in 1 second of 69.1%±1.8% predicted. Twenty-nine (26.9%) used aerosol devices only, 76 (70.4%) used DPIs only, and three (2.8%) used both. Inappropriate PIFRs were found in 17.2% of aerosol device users, and 42.1% of DPI users. CAT scores were significantly higher in the inappropriate PIFR group than in the appropriate PIFR group (11.2±7.7 vs. 7.5±4.9, p=0.003). In DPI users, female, shorter height, lower body weight and maximal voluntary ventilation (MVV) were associated with inappropriate PIFR. Conclusion: The prevalence of inappropriate PIFR among patients with COPD is 17.2% for aerosol device users, and 42.1% for DPI users. Suboptimal PIFR correlates with female gender, shorter stature, lower weight and MVV in DPI users.

Numerical Quadrature for the Prandtl Meyer Function at High Temperature with Application for Air

  • Zebbiche, Toufik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.9-17
    • /
    • 2008
  • When the stagnation temperature of the combustion chamber or ambient air increases, the specific heats and their ratio do not remain constant any more, and start to vary with this temperature. The gas remains perfect, except, it will be calorically imperfect and thermally perfect. A new generalized form of the Prandtl Meyer function is developed, by adding the effect of variation of this temperature, lower than the threshold of dissociation. The new relation is presented in the form of integral of a complex analytical function, having an infinite derivative at the critical temperature. A robust numerical integration quadrature is presented in this context. The classical form of the Prandtl Meyer function of a perfect gas becomes a particular case of the developed form. The comparison is made with the perfect gas model for aim to present a limit of its application. The application is for air.

Dynamic Stability of Elastically Restrained Cantilever Pipe Conveying Fluid with Crack (크랙을 가진 탄성지지된 유체유동 외팔파이프의 동적 안정성)

  • Son, In-Soo;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.177-184
    • /
    • 2008
  • The dynamic stability of elastically restrained cantilever pipe conveying fluid with crack is investigated in this paper. The pipe, which is fixed at one end, is assumed to rest on an intermediate spring support. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by the energy expressions using extended Hamilton's Principle. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The influence of a crack severity and position, mass ratio and the velocity of fluid flow on the stability of a cantilever pipe by the numerical method are studied. Also, the critical flow velocity for the flutter and divergence due to variation in the support location and the stiffness of the spring support is presented. The stability maps of the pipe system are obtained as a function of mass ratios and effect of crack.

The Effect of the Precursor Delivery Rate on low Pressure Flame Synthesis of $n-TiO_2$ Powder ($n-TiO_2$ 분말의 저압화염 합성에 미치는 전구체 전달속도의 영향)

  • 김태형
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.75-80
    • /
    • 1999
  • The formation of $n-TiO_2$ powder by oxidation of Ti-ethoxied vapor in a flat flame burner reactor maintained under 20 torr has been studied. The produced powder were characterized in terms of crystal structure, chemical composition by XRD and TEM. The results showed that the powder consisted of loose agglomerated anatase and rutile particles and their size were about 10 nm and 20 nm, respectively. In the course of synthesis, changes of the flame color were happened to each condition during heating up the bubbler. The flame color transition phenomena reveled that a critical precursor delivery rate was needed for the powder formation (obtainable powder yield). The critical precursor delivery rate was estimated by a simple function of the bubbler temperature and the carrier gas flow rate. The critical precursor delivery rate was reviewed as an important variable of the nanopowder synthesis.

  • PDF

Pulmonary Functions and Inflammatory Biomarkers in Post-Pulmonary Tuberculosis Sequelae

  • Shanmugasundaram, Kumar;Talwar, Anjana;Madan, Karan;Bade, Geetanjali
    • Tuberculosis and Respiratory Diseases
    • /
    • v.85 no.2
    • /
    • pp.175-184
    • /
    • 2022
  • Background: Post-tuberculosis (TB) sequelae is a commonly encountered clinical entity, especially in high TB burden countries. This may represent chronic anatomic sequelae of previously treated TB, with frequent symptomatic presentation. This pilot study was aimed to investigate the pulmonary functions and systemic inflammatory markers in patients with post-TB sequelae (PTBS) and to compare them with post-TB without sequelae (PTBWS) participants and healthy controls. Methods: A total of 30 participants were enrolled, PTBS (n=10), PTBWS (n=10), and healthy controls (n=10). Pulmonary function tests included spirometry and measurement of airway impedance by impulse oscillometry. Serum levels of matrix metalloproteinase (MMP)-1, transforming growth factor-β, and interferon-γ were estimated. Results: Slow vital capacity (SVC), forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), FEV1/FVC, and peak expiratory flow were significantly lower in PTBS as compared to controls. SVC and FEV1 were significantly less in PTBS as compared to PTBWS. Total airway impedance (Z5), total airway resistance (R5), central airway resistance (R20), area of reactance (Ax), and resonant frequency (Fres) were significantly higher and respiratory reactance at 5 and 20 Hz (X5, X20) were significantly lower in PTBS as compared to PTBWS. Spirometry parameters correlated with impulse oscillometry parameters in PTBS. Serum MMP-1 level was significantly higher in PTBS as compared to other groups. Conclusion: Significant pulmonary function impairment was observed in PTBS, and raised serum MMP-1 levels compared with PTBWS and healthy controls. Follow-up pulmonary function testing is recommended after treatment of TB for early diagnosis and treatment of PTBS.

The Analysis of Traffic Flow Characteristics on Moving Bottleneck (연속류 시설의 이동병목구간에서 지체산정방법 -모의실험을 통한 교통류의 평균지체분석-)

  • Kim, Won-Kyu;Jeong, Myeong-Kyu;Kim, Byung-Jong;Seo, Eun-Chae;Kim, Song-Ju
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.8 no.4
    • /
    • pp.170-181
    • /
    • 2009
  • When a slow-moving vehicle occupies one of the lanes of a multi-lane highway, it often causes queuing behind, unlike one is caused by an actual stoppage on that lane. This happens when the traffic flow rate upstream from the slow vehicle exceeds a certain critical value. This phenomena is called as the Moving Bottleneck, defined by Gazis and Herman (1992), Newell (1998) [3], and Munoz and Daganzo (2002), who conducted the flow estimates of upstream and downstream and considered slow-moving vehicle speed and the flow ratio exceeding slow vehicle and the microscopic traffic flow characteristics of moving bottleneck. But, a study of delay on moving bottleneck was not conducted until now. So this study provides a average delay time model related to upstream flow and the speed of slow vehicle. We have chosen the two-lane highway and homogeneous traffic flow. A slow-moving vehicle occupies one of the two lanes. Average delay time value is a result of AIMSUN[9], the microscopic traffic flow simulator. We developed a multiple regression model based on that value. Average delay time has a high value when the speed of slow vehicle is decreased and traffic flow is increased. Conclusively, the model is formulated by the negative exponential function.

  • PDF