• Title/Summary/Keyword: Critical Chain Project Management

Search Result 29, Processing Time 0.031 seconds

CRITICAL FACTORS AFFECTING SAFETY IN THE SINGAPORE CONSTRUCTION INDUSTRY

  • Sze Ming Woo;Charles Y.J. Cheah;Wai Fan Wong
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.759-768
    • /
    • 2007
  • Construction is one of the most hazardous industries due to its unique nature. Recent occurrences of highly publicised and criticized construction site accidents have highlighted the immediate need for the construction industry to address safety hazards. Safety used to be addressed as an isolated issue in the past, but the problem of safety is an emergent property of a system. In general, it seems that both industrial practitioners and government officials have tended to address safety by focusing on technical aspects and looking for immediate causes of accidents after they have taken place. The objective of this paper is to examine issues and critical factors that affect the safety standards from a holistic point of view. The job of making worksites safe should not just fall squarely on the contractors but should be shared by all parties in the value chain of construction activities.

  • PDF

Automated Life-Cycle Management System Based on SCM for Super High-rise Buildings Construction (SCM기반 Automated Life-Cycle Management System 구축방안 - 초고층 빌딩 커튼월을 중심으로 -)

  • Yoon Jeong-Hwan;Kim Yea-Sang;Chin Sang-Yoon;Kim Chang-Duk;Choi Yoon-Ki;Chun Jae-Youl;Lim Hyung-Chul
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.430-433
    • /
    • 2003
  • Cost, schedule, quality are the essential parts of success of every construction project. It is especially true in high-rise building construction. Among the construction components in high-rise building construction, curtain walls are very important elements for the project success because they take large portion of cost and schedule. However, curtain wall construction process are very complicated, where many entities including designers, suppliers, contractors and even maintenance contractors are involved. Therefore, control and management of their relationships and production process are critical. It is suggested that this can be solved by the concept of Supply Chain Management which is supported by the automated information technology with Radio Frequency Identification. Such concept is defined as 'Automated Life-Cycle Management System Based On SCM' and this study suggests rode map to establish the system.

  • PDF

Critical Assessment of Programme-Based Conflict Resolution Model Applied to Multiple Stakeholders Within The Context of Industrialized Building Production and Life Cycle Supply Chain System

  • Tanaka, Koji
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.551-562
    • /
    • 2022
  • The building production system has been analysed by the dichotomy "employer-contractor" relationship, which failed to take into account of the role and function of multiple stakeholders within the life-cycle supply chain. This is further observed in the current conflict resolution model, which, in my argument, struggles to contribute to industrialize the building production and achieve better efficiency and effectiveness as expected. The purpose of this paper is to critically assess the issues of current programme-based conflict resolution model, and discuss alternative models how they can be modelled and applied to the construction projects. The conclusions of findings are; First, the current model is framed around the contracts and dispute resolutions based on the legal concept of "claimant and respondent" where one party(s) advances a claim once and the other(s) objects, as such it fails to reflect the nature of construction projects where multiple stakeholders are involved concurrently and for a long period of life-cycle of buildings. Second, an alternative is "Six-stakeholders model" which represents the multiple stakeholders and clarifies the flow of obligation-liability-monetary relationships among participants for a long period of life-cycle of buildings. Further, with reference to both historical and recent cases, a reflection and insight into pros and cons of programming method is added, especially as to why this method is considered to have become a mandate of the modern construction management, and how academics and practitioners should deal with it more cautiously and prudently.

  • PDF

Key success factors for implementing modular integrated construction projects - A literature mining approach

  • Wuni, Ibrahim Yahaya;Shen, Geoffrey Qiping
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.343-352
    • /
    • 2020
  • Modular integrated construction (MiC) is an innovative construction method where components of a building are manufactured in an offsite factory, trucked to the job site in sections, set in place with cranes, and assembled together to form a whole building. Where circumstances merit, favorable conditions exist and implemented effectively; MiC improves project performance. However, several key factors need to converge during implementation to realize the full benefits of MiC. Thus, a thorough understanding of the factors which are critical to the success of MiC projects is imperative. Drawing on a systematic review of 47 empirical studies, this research identified 25 key success factors (KSFs) for MiC projects. Of these, the five topmost cited KSFs for MiC projects include effective working collaboration and communication among project participants; standardization, optimization, automation and benchmarking of best practices; effective supply chain management; early design freeze and completion; and efficient procurement method and contracting. The study further proposed a conceptual model of the KSFs, highlighting the interdependences of people, processes, and technology-related KSFs for the effective accomplishment of MiC projects. The set of KSFs is practically relevant as they constitute a checklist of items for management to address and deal with during the planning and execution of MiC projects. They also provide a useful basis for future empirical studies tailored towards measuring the performance and success of MiC projects. MiC project participants and stakeholders will find this research useful in reducing failure risks and achieving more desired performance outcomes. One potential impact of the study is that it may inform, guide, and improve the successful implementation of MiC projects in the construction industry. However, the rigor of the analysis and relative importance ranking of the KSFs were limited due to the absence of data.

  • PDF

Buffer Sizing Method of CCPM Technique Using Statistical Analysis (통계분석을 이용한 CCPM 기법에서의 버퍼 산정방법)

  • Liu, Jing-Chao;WhangBo, Taeg-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.8
    • /
    • pp.29-36
    • /
    • 2012
  • In CCPM Technique, as the buffer size calculation method, the Cut and Paste(C&P) method and the Root Square Error (RSE) method for all tasks carried out the same treatment, without considering the actual situation and characteristics of the task, the lack of reasonable judgment, is too simple and hasty. In this paper, taking into account the limitations of existing methods, a new method of buffer sizing method based on statistical analysis was introduced. It makes statistical analysis for the relationship between each worker and a variety of tasks, and use the information to predict the next task time. In order to verify the effectiveness of the new method, according to different task difficulty and the number of tasks set up the project. Use C&P, RSE method and new methods to predict the time of the project. Through Monte Carlo Simulation to simulate the project time, a comparison of three methods of performance. The results show that the new method can achieve the managers expect the probability of completion, and for those tasks can be completed ahead of schedule, the new method can save project time.

Simulation Analysis of the Train Overhaul Maintenance Capacity for Rolling Stock Depot (열차 차량기지의 중정비 검수 용량 시뮬레이션 분석)

  • Jeon, Byoung-Hack;Lee, Won-Young;Jang, Seong-Young;Yoo, Jae-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1481-1498
    • /
    • 2007
  • As railroad industry face the new Renaissance era, effective and efficient maintenance methods for rolling stock operation are required with advanced railroad technology. All kinds of railroad systems such as high speed long distance train, metropolitan mass transit and light rail require systematic maintenance technology in order to maintain the safe railroad operation. Simulation models for detailed operations of the sample maintenance center are developed. In this study, standard maintenance procedures, layout, equipments and number of workers of Siheung Metropolitan Railroad Maintenance Rolling Stock Depot are considered. The proposed simulation models are developed using simulation package ARENA. Three simulation analysis using the developed simulation model are done. First, the bottleneck operation is identified. Second, the relationship between maintenance center size, number of workers and cycle time is analyzed. Lastly, the scheduling performances between PERT/CPM and Critical Chain Project Management(CCPM) are compared.

  • PDF

Relationship of the Thermal Stratification and Critical Flow Velocity Near the Baekje Weir in Geum River (금강 백제보 구간 수온성층 형성과 임계유속 관계)

  • Kim, Dong-min;Park, Hyung-Seok;Chung, Se-Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.4
    • /
    • pp.449-459
    • /
    • 2017
  • In Geum River of Korea, three multi-purpose weirs were built at the downstream of Daecheong Reservoir during the Four Major River Restoration Project (FMRRP). The weirs have altered the hydraulic characteristics of the river, and consequently transformed the large areas of flowing ecosystem to deep and wide stagnant environment. In every summer, a thermal stratification occurred near the Baekje Weir having mean depth of 4.0 m, and the surface algal blooms dominated by buoyant cyanobacteria have been frequently formed after the FMRRP. The objective of this study was to investigate the relationship between flow velocity and thermal stability of the waterbody using a three-dimensional (3D) hydrodynamic model (EFDC+) after calibration against the thermistor chain data obtained in 2014. A new Sigma-Zed vertical grid system of EFDC+ that minimize the pressure gradient errors was used to better simulate the thermodynamics of the waterbody. The model reasonably simulated the vertical profiles of the observed water temperatures. The vertical mean flow velocity and the Richardson Number (Ri) that represents the stability of waterbody were estimated for various management water levels and flow rates scenarios. The results indicated that the thermal stability of the waterbody is mostly high ($Ri{\gg}0.25$) enough to establish stratification, and largely depend on the flow velocity. The critical flow velocity that can avoid a persistent thermal stratification was found to be approximately 0.1 m/s.

Evaluation of Train Overhaul Maintenance Capacity for Rolling Stock Depot Using Computer Simulation Method (시뮬레이션 기법을 활용한 열차 차량기지의 중정비 검수 용량 평가)

  • Jang, Seong-Young;Jeon, Byoung-Hack;Lee, Won-Young;Yoo, Jae-Kyun
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.2 s.39
    • /
    • pp.231-242
    • /
    • 2007
  • As railroad industry faces the new Renaissance era, effective and efficient maintenance methods for rolling stock operation are required with advanced railroad technology. All kinds of railroad systems such as high-speed long-distance train, metropolitan mass transit and light rail require systematic maintenance technology in order to maintain the safe railroad operation. Simulation models for regular operations of the example maintenance center are developed. In this study, standard maintenance procedures, layout, equipments, and number of workers of Siheung Metropolitan Railroad Maintenance Rolling Stock Depot are considered. The proposed simulation models are developed using simulation package ARENA. After simulation, four types of observations are analyzed. First, the bottleneck operation is identified. Second, the relationship between maintenance center size, number of workers and cycle time is analyzed. Third, the scheduling performances between PERT/CPM and Critical Chain Project Management(CCPM) are compared. Lastly, the simulation results according to worker's working coverage shows expanding the worker's coverage decreases the cycle time and increases throughput per train. However, workers are to be fully trained to do multiple skill work.

An Analysis on the Investment Determinants for Insolvent Housing Development Projects (건설회사의 공동주택 PF 부실사업장에 대한 투자결정요인 분석)

  • An, Kukjin;Cho, Yongkyung;Lee, Sangyoub
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.2
    • /
    • pp.112-121
    • /
    • 2014
  • After IMF bailout crisis in Korea, project financing has been employed as a major funding vehicle for the housing development. In 2008, the recession of housing market due to the global financial crisis had an significant impact on the increasing insolvent site of PF based housing development project, resulting in serious impact to whole economy as a chain effect. In order to resolve this vicious circle of bankruptcy, the major construction companies were urged to take over the insolvent sites and invest to them for normal project exit, and finally play a critical role in normalization of market. Therefore, this study aims to define the core factors for decision making to invest to insolvent site and find out differences among constructors, developers, financial lenders. The results from AHP analysis, the profitability was the most important factor to constructors. Moreover, even though the location merit is little less, through competitive price, we can assure that stable profitability is most important factor to decide to invest in insolvent site. In conclusion, the price is cheap, is highly feasible, if the land secured, major construction company will participate in a PF business investment. These findings were verified by the investment case of major construction company.