• Title/Summary/Keyword: Criteria for the Fertilizer

Search Result 73, Processing Time 0.036 seconds

Monitering of Heavy Metal (loid)s Contamination of Arable Soils near Industrial Complexes in Gyeongnam Province of South Korea

  • Park, Hye Jin;Lee, Hyun Ho;Hong, Chang Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.589-597
    • /
    • 2016
  • There are a number of industrial complexes which could be a source of heavy metal (loid)s contamination of arable soil in Gyeongnam province of South Korea. Heavy metal (loid)s accumulation of plant is more related to the concentration of plant available heavy metal (loid)s in arable soil than that of total heavy metal (loid)s. The objectives of this study were 1) to examine heavy metal concentrations in soils located near industrial complexes in Gyeongnam province and 2) to determine the relationship between concentration of plant available heavy metal (loid)s and chemical properties of soil. Soil samples were collected from 85 sites of arable lands nearby 7 industrial complexes in Gyeongnam province. Total heavy metal (loid)s concentration, available heavy metal (loid)s concentration, and chemical properties of collected soils were measured. The mean concentrations of arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in the soils were $5.8mg\;kg^{-1}$, $1.3mg\;kg^{-1}$, $0.03mg\;kg^{-1}$, $51.5mg\;kg^{-1}$, and $68.7mg\;kg^{-1}$, respectively. Total concentration of Cd and Zn in arable soil located near ${\nabla}{\nabla}$ industrial complex exceeded the warning criteria ($4mg\;kg^{-1}$ and $300mg\;kg^{-1}$ for Cd and Zn, respectively) as described by in the soil environmental conservation Act of Korea. The concentration of plant available heavy metal (loid)s was negatively related to the soil pH and available Pb and Zn concentrations had relatively high correlation coefficient when compared with other heavy metal (loid)s. The concentration of plant available Pb and Zn was negatively related to that of organic matter (OM). Based on the above results, it might be a good soil management to control pH and OM concentration with soil amendments such as lime and compost to reduce phytoavailability of heavy metal (loid)s in arable soil located near industrial complex.

Evaluation of physio-chemical properties and stability of some commercial horticultural substrates by the European Standard Methods (유럽표준분석법에 의한 원예용 상토의 이화학성 및 안정성 평가)

  • Kim, Hyuck-Soo;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.44-50
    • /
    • 2010
  • This study was carried out to analyze physico-chemical properties and to determine stability of the 19 commercially available horticultural substrates in Korea by European standard methods (EN methods). The average pH, EC, T-N, $P_2O_5$ were 5.44, 0.62$dS{\cdot}m^{-1}$, 0.98% and 10.54$mg{\cdot}L^{-1}$, respectively. Dry bulk density and particle density were in the range of 124.47~243.16$kg/m^3$ and 2073.94~2249.99$kg/m^3$, respectively. Seventeen out of 19 horticultural substrates used in this study were 'very stable'. The other2 substrates were classified as 'stable'. Korea's own criteria of stability for the organic materials such as growing substrates and compost need to be developed so that farmers can use the optimum organic materials without anxiety.

Analysis of Productivity in Rice Plant II Evaluation of Canopy Structure and Canopy Score (벼의 생산력(生産力) 분석(分析) II 생산구조(生産構造) 평가(評價)와 군낙평점(群落評點))

  • Park, Hoon;Kim, Yung Sup;Yoon, Jong Hyuk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.5 no.1
    • /
    • pp.9-15
    • /
    • 1972
  • Comparative analyses of canopy structure were conducted using newly bred high yield rice cultivars (IR 667-Suwon 213 and 214) and commercial varieties (Jinhung and Paldal) under the field condition. "Canopy score" as criteria of canopy structure was proposed. The results were summerized as follows: 1. IR667 line (IR8${\times}$Taichung Native 1${\times}$Yukara) showed lower canopy height, greater tiller openness, smaller leaf openness and leaf length ratio (flag leaf/3rd), shorter 4th and 5th internode length, greater diameter of 5th internode, consequently greater leaf area index, panicle weight and leaf weight ratio (leaf/leaf sheathculm) as merits, and greater leaf width, smaller leaf number(number of leaf/$m^2$)and specific leaf area($cm^2/g$) and faster destruction of canopy by senescence as demerits comparing with commercial varieties. 2. IR 667 line showed much higher "Canopy score", subsequently higher yield. 3. The quality of individual leaf was better in the commercial varieties indicating that the best combination for the better yield would be the leaf of commercial varieties with the structure of IR667 line.

  • PDF

Comparing Farming Methods in Pollutant runoff loads from Paddy Fields using the CREAMS-PADDY Model (영농방법에 따른 논에서의 배출부하량 모의)

  • Song, Jung-Hun;Kang, Moon-Seong;Song, In-Hong;Jang, Jeong-Ryeol
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.4
    • /
    • pp.318-327
    • /
    • 2012
  • BACKGROUND: For Non-Point Source(NPS) loads reduction, pollutant loads need to be quantified for major farming methods. The objective of this study was to evaluate impacts of farming methods on NPS pollutant loads from a paddy rice field during the growing season. METHODS AND RESULTS: The height of drainage outlet, amount of fertilizer, irrigation water quality were considered as farming factors for scenarios development. The control was derived from conventional farming methods and four different scenarios were developed based combination of farming factors. A field scale model, CREAMS-PADDY(Chemicals, Runoff, and Erosion from Agricultural Management Systems for PADDY), was used to calculate pollutant nutrient loads. The data collected from an experimental plot located downstream of the Idong reservoir were used for model calibration and validation. The simulation results agreed well with observed values during the calibration and validation periods. The calibrated model was used to evaluate farming scenarios in terms of NPS loads. Pollutant loads for T-N, T-P were reduced by 5~62%, 8~37% with increasing the height of drainage outlet from 100 mm of 100 mm, respectively. When amount of fertilizer was changed from standard to conventional, T-N, T-P pollutant loads were reduced by 0~22%, 0~24%. Irrigation water quality below water criteria IV of reservoir increased T-N of 9~65%, T-P of 9~47% in comparison with conventional. CONCLUSION(S): The results indicated that applying increased the height of drainage after midsummer drainage, standard fertilization level during non-rainy seasons, irrigation water quality below water criteria IV of reservoir were effective farming methods to reduce NPS pollutant loads from paddy in Korea.

Water Quality of Streams and Agricultural Wells Related to Different Agricultural Practices in Small Catchments of the Han River Basin (농업형태가 다른 한강 상하류 소유역의 하천수 및 농업용 지하수 수질)

  • Jung, Yeong-Sang;Yang, Jae-E;Joo, Young-Kyu;Lee, Joo-Young;Park, Yong-Seong;Choi, Mun-Heon;Choi, Seung-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.199-205
    • /
    • 1997
  • Water quality of streams and ground water from areas of different agricultural practices in the small catchments of the Han River basin was investigated. Water samples were collected from upper, middle and lower reaches of the Han River Basin where three types of agricultural management have been practiced : (1) highland agriculture and livestocks in Daegwanryung area, (2) typical upland and paddy farmings in Dunnae (Jucheon River) and Chuncheon (Soyang River) areas, and (3) intensive farming in the plastic film house in Guri area (Wangsuk stream). Water quality was monitored for EC, pH, COD, TSS, N, rations and anions. Concentrations of N, especially nitrate, and phosphorus in both stream and ground water exceeded the standard water quality criteria in many cases, but those of heavy metals were non-detectable or trace in most cases, except for Wangsuk stream where a high level was detected in a specific sampling time. Chemical criteria such as pH, EC and COD of the stream were suitable for irrigation purpose, but nitrate concentrations in ground water used in the intensive plastic film house were high enough to require a special management consideration. A model on the irrigation water quality incorporating EC and nitrate concentrations was suggested in view of fertilizer management and environmental quality.

  • PDF

A Criteria on Nitrate Concentration in Soil Solution and Leaf Petiole Juice for Fertigation of Cucumber (Cucumis sativus L.) under Greenhouse Cultivation (시설 오이의 관비재배를 위한 토양용액과 엽병즙액중 질산태 농도 기준 설정)

  • Lim, Jae-Hyun;Lee, In-Bog;Kim, Hong-Lim
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.5
    • /
    • pp.316-325
    • /
    • 2001
  • To develope a technique for efficiently managing fertilizer for cucumber, a quick test method to quantify nitrate content in soil solution and leaf petiole juice using a simple instrument was investigated. Among the nitrate analyzing instruments such as compact ion meter, nitrate ion meter, and test strip with reflectometer, the paper test-strip used in conjunction with a hand-held reflectometer was most closely correlated with ion chromatography method in nitrate content, and then it would be suggested with a tool that a farmer can use rapidly, conveniently and accurately for nitrate analysis in a field. Nitrate content in soil solution collected by porous cup was very variable on the lapsed time after drip irrigation and the sampling positions such as soil depth and the distance from dripper. As a result, a significant correlation between nitrate contents of soil solutions and 2M KCl soil extract was not found. However, nitrate content in soil solution extracted with a volume basis (soil:water=1:2) showed the highly significant correlation with that in 2M KCl extract. Nitrate contents of cucumber leaf petiole juices was greatly different between upper and lower leaves. Eleven to sixteen positioned-leaf would be a proper sampling position to determine nitrate content in leaf petiole for evaluating nutrient state by plant tissue analysis. From the secondary regression equations between nitrate contents of soil and petiole juice and the yield of cucumber, nitrate levels for real time diagnosis were estimated as $400mg\;l^{-1}$ soil solution by porous cup. $300mg\;l^{-1}$ in a soil volume extraction, and $1400mg\;l^{-1}$ in petiole juice from spring to summer season. In addition, the maximum yield of cucumber fruit in pot test was obtained in nitrate $1500mg\;l^{-1}$ level of petiole juice, which was similar to nitrate $1400mg\;l^{-1}$ in greenhouse trial.

  • PDF

Influence on Composting of Waste Mushroom Bed from Agaricus bisporus by using Mixed Organic Materials (혼용자재 특성이 양송이 폐상배지를 이용한 퇴비제조에 미치는 영향)

  • Kyung, Ki-Cheon;Lee, Hee-Duk;Jung, Young-Pil;Jang, Kab-Yeul;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.335-340
    • /
    • 2010
  • This study was conducted to select organic materials (OM) and nitrogen sources in composting of waste mushroom bed from Agaricus bisporus. We examined physio-chemical properties of the organic materials and the mixture ratio for preparing the wasted mushroom bed (M) compost. The carbon content of sawdust was higher than those of rice straw (R) as OM source and the nitrogen content was high in the order of fowl manure (F)>> pig manure (P)> cow manure (C). The compost was prepared to maintain the criteria of above 25% organic matter and then the change of their ingredients was estimated during the process of fermentation. The temperature of waste mushroom bed+pig manure+rice straw (MRP) treatment was varied fast throughout fermentation, on the other hand the temperature of waste mushroom bed+pig manure+sawdust (MSP) treatment was steadily elevated to the middle of composting. The pH of the compost was somewhat high to pH 8.5~9.0 at the early stage, but decreased to 7.5 at the end stage of composting. The content of OM after fermentation was decreased to the level of 19~21% in rice straw, but the sawdust treatment maintained 25~27% organic matter. The waste mushroom bed+fowl manure+rice straw (MRF) treatment, which contains 26.2% organic matter and 0.68% nitrogen, was the highest among them. The volume of compost was reduced to 50% by using rice straw as organic matter, but reduced to 30% by using the sawdust. The contents of heavy metal in the compost were suitable within the legal criteria. The number of microorganisms were higher in the rice straw than those in the sawdust. It was high in the order of fowl manure> pig manure> cow manure. The major groups consisted of aerobic bacteria, gram negative bacteria and Bacillus sp. and their populations after fermentation were increased to $1{\times}10^1{\sim}1{\times}10^2\;cfu\;g^{-1}$ rather than those before fermentation. Therefore we concluded that the waste mushroom bed+fowl manure+sawdust (MSF 3:9:1 v/v/v) treatment was suitable combination for high organic matter and nitrogen source, and the periods of composting were 50~60 days.

Study of Trace Element and PAHs Distribution for Extensive Regulation Establishment in Raw Material of Compost on Organic Resource (퇴비원료기준 확대설정을 위한 유기성자원의 미량원소 및 PAHs 분포 연구)

  • Lim, Dong-Kyu;Lee, Seung-Hwan;Kwon, Soon Ik;Seong, Ki-Seog;Lee, Jeong-Taek;Song, Beom-Heon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.339-344
    • /
    • 2006
  • A lot of organic wastes have been produced from diverse industries, they must be tested by the regulation of fertilizer control act if reuse the organic wastes for agricultural utilization. The regulation has had only two criteria; the content of organic matter and 8 heavy metals. This study was conducted to evaluation trace element (boron, cobalt, molybdenum, and selenium) and distribution of organic compounds with different classification for complement the regulation in 16 organic waste materials(62 samples) collected from different regions and industries. Contents of boron(leather industry sludge, $154.2mg\;kg^{-1}$; food company sludge, $57.1mg\;kg^{-1}$), cobalt(industrial area sewage sludge, $95.2mg\;kg^{-1}$; metropolitan sewage sludge, $22.9mg\;kg^{-1}$), molybdenum(metropolitan sewage sludge, $40.1mg\;kg^{-1}$; food company sludge, $16.8mg\;kg^{-1}$), selenium (fiber industry sludge, $28.1mg\;kg^{-1}$; leather industry sludge, $16.9mg\;kg^{-1}$; food company sludge, $15.9mg\;kg^{-1}$) were highest compare to the other organic wastes. Total PAHs contents were the highest in paper-mill manufacture($3,462ug\;kg^{-1}$), and among the 16 PAHs, naphthalene, phenanthrene, pyrene, fluoroanthene, Anthracene and acenaphthene were detected more clearly than others in all kinds of organic resources.

The Potential Acid Sulfate Soils Criteria by the Relation between Total-Sulfur and Net Acid Generation (전황함량과 순산발생능력의 상관관계를 통한 잠재특이산성토양 기준 설정)

  • Moon, Yonghee;Zhang, Yong-Seon;Hyun, Byung-Keun;Sonn, Yeon-Kyu;Park, Chan-Won;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.904-909
    • /
    • 2012
  • Acid sulfate soil (ASS) and potential acid sulfate soil (PASS) are distribution in worldwide and originate from sedimentary process, volcanic activity, or metamorphism and are problematic in agriculture and environmental due to their present and potential acidity developed by the oxidation. The PASS was defined as soil materials that had sulfidic layer more than 20 cm thick within 4 m of the soil profile and contained more than 0.15% of total-sulfur (T-S). A tentative interpretative soil classification system was proposed weak potential acid sulfate (T-S, 0.15-0.5%), moderate potential acid sulfate (T-S, 0.5-0.75%) and strong potential acid sulfate (T-S, more than 0.75%). PASS due to excess of pyrite over soil neutralizing capacity are formed. It provides no information on the kinetic rates of acid generation or neutralization; therefore, the test procedures used in acid base account (ABA) are referred to as static procedures. The net acid generation (NAG) test is a direct method to measure the ability of the sample to produce acid through sulfide oxidation and also provides and indication. The NAG test can evaluated easily whether the soils is PASS. The samples are mixed sandy loam and the PAS from the hydrothermal altered andesite (1:3, 1:8, 1:16, 1:20, 1:40, 1:80 and 1:200 ratios) in this study. We could find out that the NAG pH of the soil containing 0.75% of T-S was 2.5, and that of the soil has 0.15% of T-S was 3.8. NAG pH test can be proposed as soil classification criteria for the potential acid sulfate soils. The strong type has NAG pH of 2.5, the moderate one has NAG pH of 3.0, and the weak one has NAG pH of 3.5.

Characterization of Copper Toxicity Symptoms and Determination of Tissue Critical Concentration for Diagnostic Criteria in Korean Bred Strawberries (국내육성 주요 딸기 품종에서 발생하는 구리(Cu) 과잉 증상 및 영양진단을 위한 식물체 내 한계농도)

  • Choi, Jong Myung;Nam, Min Ho;Lee, Chiwon W.
    • Horticultural Science & Technology
    • /
    • v.30 no.5
    • /
    • pp.477-483
    • /
    • 2012
  • This study was carried out to investigate the influence of copper concentrations in fertilizer solution on the growth of and nutrient uptake by domestically bred strawberries. The characterization of toxicity symptoms as well as tissue analyses based on dry weight of above ground tissue were also conducted to determine the threshold levels in plants when toxicity developed in copper. The dry weights of the above ground tissue were not significantly different among the treatments of 0.25 mM to 1.0 mM in 'Keumhyang' and 'Maehyang' strawberries and that of 0.25 mM to 3.0 mM in 'Seolhyang' strawberry. This indicates that the 'Seolhyang' strawberry is more tolerant to copper toxicity than 'Keumhyang' or 'Maehyang' strawberries. Application of copper at high concentrations resulted in severe toxicity such as death of extensive areas of leaves. The lower leaves became yellow and die rapidly as the symptoms spread up the plants. The leaf blades and petioles died back to the crown and hang on by mechanical attachment. Symptoms of copper toxicity in lower leaves developed as browning on leaf margins and in patches between leaf veins that became necrotic. The elevation of copper concentrations in fertilizer solution did not influence the tissue phosphorus, potassium, calcium, and magnesium contents based on the dry weight of the above ground tissue. The tissue copper contents increased lineally as the copper concentrations in fertilizer solution were elevated. But the tissue iron, manganese and boron contents were not influenced by the concentrations. When the concentration of copper at which growth of a plant is retarded by 10% is regarded as threshold level, the copper contents based on dry weight of above ground plant tissue should be lower than 71.4, 57.9 and 74.8 $mg{\cdot}kg^{-1}$ in 'Keumhyang', 'Maehyang' and 'Seolhyang' strawberries, respectively. The symptom characterization and established threshold level in copper toxicity would help growers to prevent the reduction of crop growth and yield in 'Seolhyang' strawberry cultivation.