• Title/Summary/Keyword: Crime data

Search Result 391, Processing Time 0.022 seconds

Relationship between Change of Demographic Composition and Crime : Comparing Areas with Growth in Population to Areas with Decline

  • Lee, Soochang;Kim, Daechan
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.63-70
    • /
    • 2022
  • This study is to investigate that population change as a result of the decline in population has a correlation with a decrease in crime, with the change in the demographic composition by comparing with two models: model with growth in population and one with the decline in population. We collected demographic data for all cities in Korea from the 2010 Census to 2020 offered by the Korean Statistical Information Service, with crime data comprising serious reported crime events from the Korean Nation Police Agency through requesting data related to the total number of crimes at the same as the period of demographic data. This study can identify the impacts of demographic changes as a result of population change on crime change through a comparative analysis between areas with population growth and ones with population decline. We can confirm that there are differences in determinants of crime between areas with population increase and one with population decrease from the analysis of the impact of demographic change as a result of population change on crime change.

Learning Method for Real-time Crime Prediction Model Utilizing CCTV

  • Bang, Seung-Hwan;Cho, Hyun-Bo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.5
    • /
    • pp.91-98
    • /
    • 2016
  • We propose a method to train a model that can predict the probability of a crime being committed. CCTV data by matching criminal events are required to train the crime prediction model. However, collecting CCTV data appropriate for training is difficult. Thus, we collected actual criminal records and converted them to an appropriate format using variables by considering a crime prediction environment and the availability of real-time data collection from CCTV. In addition, we identified new specific crime types according to the characteristics of criminal events and trained and tested the prediction model by applying neural network partial least squares for each crime type. Results show a level of predictive accuracy sufficiently significant to demonstrate the applicability of CCTV to real-time crime prediction.

Defining the Patterns and Factors of Urban Crime in Korean Cities Based on the Analysis of Social Statistical Data

  • Chang, Dong-Kuk;Shim, Jae-Choon;Park, Joo-Hee
    • Architectural research
    • /
    • v.14 no.2
    • /
    • pp.45-56
    • /
    • 2012
  • The high rate of urban crime is a main issue that needs to be dealt with in this high-tech society. With the rapid increase of urban crime, research has mainly focused on topics either on a global or a local scale, such as cities or communities and houses or buildings, without reliable observational data. This study makes the best use of the nationwide surveys carried out by Korean government agencies for the analysis of urban crime patterns and factors in major Korean cities. The aims of this research are threefold: understanding the relationship between urban crime patterns and socio-economic differences in cities, determining the effect of residence types on the urban crime patterns; and uncovering potential influential factors of a crime victim's individual characteristics. The statistical methods used for the analysis of social statistical data are as follows: simple regression, logistic regression, one-way ANOVA and post-hoc test. This research found that the patterns of urban crime rate in cities have a certain tendency toward the cities' socio-economic and geographical differences. The residence type is an influential factor showing a close relation to the crime rate. Personal issues, such as the types of occupation, education, marriage, etc., are directly relevant to victims of crime.

A Study on the Crime Prevention Smart System Based on Big Data Processing (빅데이터 처리 기반의 범죄 예방 스마트 시스템에 관한 연구)

  • Kim, Won
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.75-80
    • /
    • 2020
  • Since the Fourth Industrial Revolution, important technologies such as big data analysis, robotics, Internet of Things, and the artificial intelligence have been used in various fields. Generally speaking it is understood that the big-data technology consists of gathering stage for enormous data, analyzing and processing stage and distributing stage. Until now crime records which is one of useful big-sized data are utilized to obtain investigation information after occurring crimes. If crime records are utilized to predict crimes it is believed that crime occurring frequency can be lowered by processing big-sized crime records in big-data framework. In this research the design is proposed that the smart system can provide the users of smart devices crime occurrence probability by processing crime records in big-data analysis. Specifically it is meant that the proposed system will guide safer routes by displaying crime occurrence probabilities on the digital map in a smart device. In the experiment result for a smart application dealing with small local area it is showed that its usefulness is quite good in crime prevention.

Analysis for the Effect of Housing Types on Crime - Focused on the 25 Autonomous Districts in Seoul Metropolis - (주택유형이 범죄에 미치는 영향 분석 - 서울시 25개 자치구를 중심으로 -)

  • Park, Seunghoon
    • Journal of the Korean housing association
    • /
    • v.25 no.3
    • /
    • pp.85-92
    • /
    • 2014
  • The purpose of this study is to explore the relationship between housing types and crime and to suggest the appropriate strategies and interventions of housing policies for crime prevention. For spatial analysis of crime data, spatial autocorrelation is tested by Moran's I Test. A Ordinary Least Squares-based regression model is employed because crime data used in this study fails to show spatial autocorrelation. Results show that housing type variables except non-residential housing type are not associated with crime. Among land-use characteristics, the percentage of commercial areas is likely to better explain crime occurrence rather than housing types. It is surprising that residents' satisfaction to housing environment has a positive direction in its relationship with crime even though it cannot have a statistical significance. However, fear of crime shows a negative direction with crime although it fails to have a statistical significance. The findings of this study can contribute to understand the association between housing types and crime when setting housing policies for crime prevention.

Analysis of Structured and Unstructured Data and Construction of Criminal Profiling System using LSA (LSA를 이용한 정형·비정형데이터 분석과 범죄 프로파일링 시스템 구현)

  • Kim, Yonghoon;Chung, Mokdong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.1
    • /
    • pp.66-73
    • /
    • 2017
  • Due to the recent rapid changes in society and wide spread of information devices, diverse digital information is utilized in a variety of economic and social analysis. Information related to the crime statistics by type of crime has been used as a major factor in crime. However, statistical analysis using only the structured data has the difficulty in the investigation by providing limited information to investigators and users. In this paper, structured data and unstructured data are analyzed by applying Korean Natural Language Processing (Ko-NLP) and the Latent Semantic Analysis (LSA) technique. It will provide a crime profile optimum system that can be applied to the crime profiling system or statistical analysis.

Implementation of Crime Prediction Algorithm based on Crime Influential Factors (범죄발생 요인 분석 기반 범죄예측 알고리즘 구현)

  • Park, Ji Ho;Cha, Gyeong Hyeon;Kim, Kyung Ho;Lee, Dong Chang;Son, Ki Jun;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.40-45
    • /
    • 2015
  • In this paper, we proposed and implemented a crime prediction algorithm based upon crime influential factors. To collect the crime-related big data, we used a data which had been collected and was published in the supreme prosecutors' office. The algorithm analyzed various crime patterns in Seoul from 2011 to 2013 using the spatial statistics analysis. Also, for the crime prediction algorithm, we adopted a Bayesian network. The Bayesian network consist of various spatial, populational and social characteristics. In addition, for the more precise prediction, we also considered date, time, and weather factors. As the result of the proposed algorithm, we could figure out the different crime patterns in Seoul, and confirmed the prediction accuracy of the proposed algorithm.

The relation between the five critical crime of criminal law and the private security services (형법범죄 중 5대 범죄와 민간경비 간의 관계)

  • Joo, Il-Yeob;Jo, Gwang-Rae
    • Korean Security Journal
    • /
    • no.8
    • /
    • pp.361-377
    • /
    • 2004
  • This study is to examine the relations between the big five critical crime that consist of homicide, robbery, rape, theft, violence and the private security services. To achieve this objective, this research selected the subject of study, specially, 2002 status of the private security such as the number of companies and employees classified by areas along with the big five crime mentioned above classified by area. The research data is secondary data that is from '2003 Crime Analysis' of the Supreme Public Prosecutors' Office and 'The private Security Related Data' of the National Police Agency. The selected data were analyzed according to the variables by using SPSS 10.0 statistics software program. Each hypothesis was verified around the level of significance ${\alpha}$=.05 by using the statistical techniques, such as Descriptive Statistics, Correlation, Regression, etc. The following was the result of the study, First, the total number of the big five crime affects the number of the companies at significant level. Second, the number of the security companies can be explained by the each total number of the big five crime in the order of theft, robbery, violence, rape and murder. Third, the total number of the big five crime affects the number of the security employees at significant level. Forth the number of the security employees can be explained by the each total number of the big five crime in the order of theft, robbery, violence, rape and murder.

  • PDF

Crime risk implementation for safe return service (안심귀가 구현을 위한 범죄위험도 산출)

  • Park, Mi Ri;Kim, Yu Sin;Choi, Sang Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.5
    • /
    • pp.1097-1104
    • /
    • 2015
  • Rapid social and economic growth has brought positive results. At the same time, due to the increase in crime, crime prevention is important. There are many papers that analyze crime trends and crime type. Based on this, there are studies to ensure the safety of people. The study calculated the risk for the crime. it is necessary to exert a great effect on crime prevention alternatives. This paper uses crime data provided from San Francisco and victims data provided from FBI. And, it proposes the crime risk calculation. By analyzing the type of user, risk degree is given different weights according to the user, and assess the risk of crime.

Exploratory Study on Crime Prevention based on Bigdata Convergence - Through Case Studies of Seongnam City - (빅데이터 융합 기반 범죄예방에 관한 탐색적 연구 - 성남시 사례 분석을 통해 -)

  • Choi, Min-Je;Noh, Kyoo-Sung
    • Journal of Digital Convergence
    • /
    • v.14 no.11
    • /
    • pp.125-133
    • /
    • 2016
  • In recent years, various crimes such as "random killing' crime continue to rise. Despite the government's crime prevention efforts and crime related researches, crime increases and a different approach is needed. Therefore, this study proposes the alternative for crime prevention by analyzing big data. To achieve this objective, this study was to perform visualization utilizing the histogram, the bubble chart and the hit map and association analysis. To analyze the relationship between crime and some variables, this study analyzed data of Seongnam city, Korea National Police Agency and etc. The results of analysis showed that CCTV will be to reduce the crime rate and security light is not significantly relevant. And the result showed that other types of crime focused by time of the day and day of the week and showed that an increase of the foreigners and crime increase are associated. This study presents a scheme for reducing the crime rate on the basis of this analysis result.