• Title/Summary/Keyword: Crib wall system

Search Result 4, Processing Time 0.019 seconds

Study on the Displacement of Crib Wall System (Crib Wall System 변위해석에 관한 연구)

  • Kim, Doo-Jun;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.201-209
    • /
    • 2002
  • Crib wall system is one of segmental crib type wall. Crib walls are constructed from separate members with no bonds between them other than frictional. The wall units are divide into two main types termed headers and stretchers. The headers run from the front to the back of the wall, perpendicular to the wall face. The cells are created by forming a grid by stacking individual wall components known as headers and stretchers. The body of wall consists of a system of open cell which are filled with a granular material. The design of crib retaining wall is usually based on conventional design methods derived from Rankine and Coulomb theory so that is able to resist the thrust of soil behind it, because it may be assumed that the wall acts as a rigid body. However, deformation characteristics of crib walls cannot be assumed as monolithic. They consist of individual members which have been stacked to creat a three dimensional grid. Therefore, the segmental grid allows relative movement between the individual member within the wall. The three dimensional flexible grid leads to stress distribution by interaction behavior between soil and crib wall. Therefore, in this study, in order to analysis the trends of deflection of crib wall system, new numerical models based on the results of Brandl's full scale test are introduced for design concept.

The Earth Pressure Distribution of Crib Wall (Crib Wall의 토압분포)

  • Oh, Sewook;Kwon, Youngcheul;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.5
    • /
    • pp.41-48
    • /
    • 2006
  • Crib wall is one of the segmental grid retaining walls using headers and stretchers to establish the framework of the wall. In this method, grids formed by the intersection of headers and stretchers are generally filled with the gravel to maintain the weight of the wall. Therefore, the construction can be carried out with higher speed and much economically when compared with the concrete retaining wall. Furthermore, it has high drain capacity, and environmentally friendly aspects also have been pointed out because the possibility of the planting at the front of the wall. However, in the crib wall method, the relative movement between the individual headers and stretchers was generally recognized, and stress redistribution in the gravel filling was also observed when subjected to the external loading and self-weight of filling. Therefore, it has been thought that the distribution of the earth pressure in the crib wall system differ from that of the concrete retaining wall. In this study, the surcharge tests using the scaled model crib wall was carried out to observe the distribution of the earth pressure in the segmental grid retaining wall. The earth pressure was measured in the six specified height of wall, and the distribution of the pressure was analyzed. Furthermore, the earth pressure by computation or by the test using the concrete retaining wall was also considered to make comparison.

  • PDF

Stability Evaluation of Green Wall System due to Facing Rigidity (전면벽체 강성에 따른 그린월 시스템의 안정성 평가)

  • Park, Si-Sam;Kim, Hong-Taek;Kim, Seung-Wook;Kim, Yong-Eon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.3
    • /
    • pp.9-15
    • /
    • 2006
  • The Green Wall system is one of segmental concrete crib type earth retaining wall. Green wall is constructed as procedures that lay the front stretchers, rear stretchers and headers then making a rigid body through harden filled soil of interior cell. Recently, Green Wall method is applied in variable cutting ground construction because of advantage which minimize to cut base ground. In case of Green Wall method is constructed with soil nail method, expect that total system stability will increase more than flexible facing because of facing stiffness is big. However, in this case of design, facing stiffness is not considered so that is poor economy. Hence, in this study, stability increasing effect of total system analyze about that soil nail method is constructed with rigidity facing like a Green Wall method. In present study, laboratory model tests was performed for analysis on stability increasing effect of total system about changing stiffness of facing. LEM analysis conducted for evaluation on safety factor of total system sliding that facing condition changed.

  • PDF

Design and Construction of the Green Wall System considering Distribution Effect of Earth Pressure by Soil Nail (쏘일네일의 토압분담효과를 고려한 그린월 시스템의 설계 및 시공)

  • Park, Si-Sam;Cho, Sung-Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.3
    • /
    • pp.1-7
    • /
    • 2006
  • The Green Wall system, developed in Austria early 1960, is one of segmental concrete crib type earth retaining wall. Green wall is constructed as procedures that lay the front stretchers, rear stretchers and headers then making a rigid body through harden filled soil of interior cell. Green wall has pro-environmental advantages that able to grow grass in front space of stretchers and decrease cutting ground. In Europe, Green wall used without other reinforcement method. However, green wall used with other reinforcement method like a soil nailing because of environmental problem. This study was performed to introduce the design case by 'Two-Body Translation mechanism' to be able to consider distribution of earth pressure in the soil nailing when designing the green wall using soil nailing system. Also, this study attempts to evaluate the earth pressure change when advanced soil nailing system is constructed using $FLAC^{2D}$ ver. 3.30 program and 'Two-Body Translation mechanism'.

  • PDF