• 제목/요약/키워드: Creep rupture time

검색결과 112건 처리시간 0.027초

Monkman-Grant법에 의한 순수 Ti의 크리프 수명예측 (Creep Life Prediction of Pure Ti by Monkman-Grant Method)

  • 원보엽;정순억
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.352-357
    • /
    • 2003
  • Creep tests for Titan were carned out using constant-load at $600^{\circ}C$, $650^{\circ}C$ and $700^{\circ}C$. Material constants necessary to predict creep life were acquired from the experimental creep data. And the applicability of Monkman-Grant(M-G) and modified M-G relationships was discussed. It was discovered the log-log plot of M-G relationships between the rupure time(tr) and he minimum creep rate(${\varepsilon}_m$) was conditional on test temperatures. The slop of m was 2.75 at $600^{\circ}C$ and m was 1.92 at $700^{\circ}C$. However; the log-log plot of modified M-G relationships between $t_r/\varepsilon_r$ and $\varepsilon_m$ was indpendent on stresses and temperatures. That is the slop of m' was almost 3.90 in all the data. Thus, change M-G relationships to creep life prediction could be vtilized more reasonably than that of M-G relationships for type Titan. It was divided that the constant slopes never theless of temperatures of practical stresses in the modified relationship were due to an intergranular break grown by wedge-type cauities.

  • PDF

소형펀치 크리프 시험중 측정하는 변수에 대한 연구 (A Study on Parameters Measured during Small Punch Creep Testing)

  • 박태규;심상훈;윤기봉;장창희
    • 대한기계학회논문집A
    • /
    • 제26권1호
    • /
    • pp.171-178
    • /
    • 2002
  • An effect is made in this study to deepen understanding of small punch(SP) creep testing which has been a round for about 10 years as a substitute for the conventional uniaxial creep testing. Even though considerable numbers of SP creep test program have been performed, most of the tests were aimed at measuring creep rupture lives only. Very flew studies showed interest on the meaning of what we were really measuring during the SP creep tests. In this paper meanings of the parameters measured during the SP creep testing, such as punch load and punch displacement rate are investigated using finite element analysis. It was shown that the measured parameters must represent the stress and strain rates of the material at the annular region located at about 0.65 mm from the center of the SP specimen. The material in this location would go through constant maximum stress and strain rate during the testing. Experimental verification is also discussed.

AISI 316L스테인리스강의 소형펀치 크리프 거동에 미치는 마찰계수의 영향 (Effect of Friction Coefficient on the Small Punch Creep Behavior of AISI 316L Stainless Steel)

  • 김범준;조남혁;김문기;임병수
    • 대한금속재료학회지
    • /
    • 제49권7호
    • /
    • pp.515-521
    • /
    • 2011
  • Small punch creep testing has received attention due to the convenience of using smaller specimens than those of conventional uniaxial creep tests, which enables creep testing on developing or currently operational components. However, precedent studies have shown that it is necessary to consider friction between the punch and specimen when computing uniaxial equivalent stress from a finite element model. In this study, small punch creep behaviors of AISI 316L stainless steel, which is widely used in high temperature-high pressure machineries, have been compared for the two different ceramic balls such as $Si_3N_4$ and $Al_2O_3$. The optimal range of the friction coefficient is 0.4~0.5 at $650^{\circ}C$ for the best fit between experimental and simulation data of AISI 316 L stainless steel. The higher the friction coefficient, the longer the creep rupture time is. Therefore, the type of ceramic ball used must be specified for standardization of small punch creep testing.

초고온가스로 압력용기용 Gr. 91 강의 장시간 크리프 수명 예측 방법 개선 (Improvement of Long-term Creep Life Prediction Method of Gr. 91 steel for VHTR Pressure Vessel)

  • 박재영;김우곤;;김선진;김민환
    • 한국압력기기공학회 논문집
    • /
    • 제10권1호
    • /
    • pp.64-69
    • /
    • 2014
  • Gr. 91 steel is used for the major structural components of Generation-IV reactor systems, such as a very high temperature reactor(VHTR) and sodium-cooled fast reactor(SFR). Since these structures are designed for up to 60 years at elevated temperatures, the prediction of long-term creep life is important for a design application of Gr. 91 steel. In this study, a number of creep rupture data were collected through world-wide literature surveys, and using these data, the long-term creep life was predicted in terms of three methods: the single-C method in Larson-Miller(L-M) parameter, multi-C constant method in the L-M parameter, and a modified method("sinh" equation) in the L-M parameter. The results of the creep-life prediction were compared using the standard deviation of error value, respectively. Modified method proposed by the "sinh" equation revealed better agreement in creep life prediction than the single-C L-M method.

지반 크리프 거동의 미시학적 모델링 (Microscopic Modeling of Creep Behavior for Soils)

  • 김대규
    • 한국산학기술학회논문지
    • /
    • 제7권3호
    • /
    • pp.409-413
    • /
    • 2006
  • 미시학적 비배수 크리프 현상의 누적 변형은 점성토 시공지역 지반의 전반 파괴를 야기 할 수 있다. 본 연구에서는 점성토의 비배수 크리프 거동을 예측하기 위하여 Perzyna의 일반 점성이론을 소성론의 개념에서 간략화하고 수정 Cam clay 모델 및 데미지 이론을 포함하는 하나의 시간의존적 구성방정식을 유도하였다. 유도된 구성방정식을 활용하여 예측한 크리프 거동은 비배수 크리프 파괴를 포함하는 크리프 실험결과와 잘 부합하였다.

  • PDF

Time-dependent creep analysis and life assessment of 304 L austenitic stainless steel thick pressurized truncated conical shells

  • Kashkoli, Mosayeb Davoudi;Nejad, Mohammad Zamani
    • Steel and Composite Structures
    • /
    • 제28권3호
    • /
    • pp.349-362
    • /
    • 2018
  • This paper presents a semi-analytical solution for the creep analysis and life assessment of 304L austenitic stainless steel thick truncated conical shells using multilayered method based on the first order shear deformation theory (FSDT). The cone is subjected to the non-uniform internal pressure and temperature gradient. Damages are obtained in thick truncated conical shell using Robinson's linear life fraction damage rule, and time to rupture and remaining life assessment is determined by Larson-Miller Parameter (LMP). The creep response of the material is described by Norton's law. In the multilayer method, the truncated cone is divided into n homogeneous disks, and n sets of differential equations with constant coefficients. This set of equations is solved analytically by applying boundary and continuity conditions between the layers. The results obtained analytically have been compared with the numerical results of the finite element method. The results show that the multilayered method based on FSDT has an acceptable amount of accuracy when one wants to obtain radial displacement, radial, circumferential and shear stresses. It is shown that non-uniform pressure has significant influences on the creep damages and remaining life of the truncated cone.

참조응력을 이용한 316LN 스테인리스강의 크리프 해석 (Creep Analysis of Type 316LN Stainless Steel Using Reference Stress)

  • 김우곤;류우석
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2122-2129
    • /
    • 2002
  • Creep damage using a reference stress(RS) was analyzed for type 316LN stainless steel. The generalized K-R equation was reconstructed into the RS equation using a critical stress value $\sigma$. The RS equation was derived from the critical stress in failure time $t_f$ instead of material damage parameter $\omega$, which indicates the critical condition of collapse or approach to gross instability of materials during creep. For obtaining the reference stress, a series of creep tests and tensile tests were conducted with at 55$0^{\circ}C$ and $600^{\circ}C$. The stress-time data obtained from creep tests were applied to the RS equations to characterize the creep damage of type 316LN stainless steel. The value of creep constant r with stress levels was about 18 at 55$0^{\circ}C$ and 21 at $600^{\circ}C$. This value was almost similar with r = 24 in the K-R equation, which was obtained by using damage parameter $\omega$. Relationship plots of creep failure strain and life fraction $(t_f /t_r)$ were also obtained with different λ values. The RS equation was therefore more convenient than the generalized K-R equation, because the measuring process to quantify the damage parameter $\omega$ such as voids or micro cracks in crept materials was omitted. The RS method can be easily used by designers and plant operator as a creep design tool.

Evaluation of Monkman-Grant Parameters for Type 316LN and Modified 9Cr-Mo Stainless Steels

  • Kim, Woo-Gon;Kim, Sung-Ho;Ryu, Woo-Seog
    • Journal of Mechanical Science and Technology
    • /
    • 제16권11호
    • /
    • pp.1420-1427
    • /
    • 2002
  • The Monkman-Grant (M-G) and its modified parameters were evaluated for type 316LN and modified 9Cr-Mo stainless steels prepared with minor element variations. Several sets of creep data for the two alloy systems were obtained by constant-load creep tests in 550~650$\^{C}$ temperature range. The M-G parameters, m, m', C, and C' were proposed and discussed for the two alloy systems. The m value of the M-C relation was 0.90 in type 316LN steel and 0.84 in modified 9Cr-Mo steel. The m' value of the modified relation was 0.94 in type 316LN steel and 0.89 in 9Cr-Mo steel. Although creep fracture modes and creep properties between type 316LN and modified 9Cr-Mo steels showed a basic difference, the M-G and its modified relations demonstrated linearity quite well. The m' of modified relation almost overlapped regardless of the creep testing conditions and chemical variations in the two alloy systems, and the parameter m' was closer to unity than that of the M-G relation.

소형펀치-크리프 시험에 대한 응력해석과 일축 크리프 시험과의 상관성에 관한 연구 (A Study on Stress Analysis of Small Punch-Creep Test and Its Experimental Correlations with Uniaxial-Creep Test)

  • 이송인;백승세;권일현;유효선
    • 대한기계학회논문집A
    • /
    • 제26권12호
    • /
    • pp.2565-2573
    • /
    • 2002
  • A basic research was performed to ensure the usefulness of Small Punch-creep(SP-creep) test for residual life evaluation of heat resistant components effectively. This paper presents analytical results of initial stress and strain distributions in SP specimen caused by constant loading for SP-creep test and its experimental correlations with uniaxial creep(Ten-creep) test on 9Cr1MoVNb steel. It was shown that the initial maximum equivalent stress, ${\sigma}_{eq{\cdot}max}$ from FE analysis was correlated with steady-state equivalent creep strain rate, ${\epsilon}_{qf-ss'}$ rupture time, $t_r$, activation energy, Q and Larson-Miller Parameter, LMP during SP-creep deformation. The simple correlation laws, ${\sigma}_{sp}-{\sigma}_{TEN}$, $P_{sp}-{\sigma}_{TEN}\; and\; Q_{sp}-Q_{TEN}$ adopted to established a quantitative correlation between SP-creep and Ten-creep test data. Especially, the activation energy obtained from SP-creep test is linearly related to that from Ten-creep test at $650^{\circ}C$ as follows : $Q_{SP-P}\;{\risingdotseq}\;1.37 \;Q_{TEN},\; Q_{SP-{\sigma}}{\risingdotseq}1.53\; Q_{TEN}$.

핵융합로용 저방사화 철강재료(RAFs)의 크리프 특성평가 (Evaluation on Creep properties of Reduced Activation Ferritic Steel(RAFs) for Nuclear Fusion Reactor)

  • 공유식;윤한기;김동현;박이현;남승훈
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 추계학술대회 논문집
    • /
    • pp.146-151
    • /
    • 2003
  • Reduced Activation Ferritic/Martenstic (RAFs) are leading candidates for structural materials of D-T fusion reactor. One of The RAFs, JLF-1 (9Cr-2W-V, Ta) has been developed and proved to have good resistance against high-fluency neutrino irradiation and good phase stability. Recently, in order to clarify the strengthening mechanical at high temperature, a new scheme to improve high temperature mechanical properties is desired. Therefore, the creep properties and creep life prediction by Larson-Miller Parameter method for JLF-1 to be used for fusion reactor materials or other high temperature components were presented at the elevated temperatures of $500^{\circ}C$, $550^{\circ}C$, $600^{\circ}C$, $650^{\circ}C$ and $704^{\circ}C$. It was confirmed experimentally and quantitatively that a creep life predictive e벼ation at such various high temperatures was well derived by LMP.

  • PDF