• Title/Summary/Keyword: Creep life

Search Result 270, Processing Time 0.028 seconds

Topography and Soil Characteristics Related to Land Creep in 37 Areas in South Korea (우리나라 37개 땅밀림지의 지질 및 토양 특성)

  • Park, Jae-Hyeon;Seo, Jung Il;Ma, Ho-Seop;Kim, Dongyeob;Kang, Minjeng;Kim, Kidae
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.540-551
    • /
    • 2019
  • This study was conducted to provide basic data for classifying patterns of land creep in 37 areas in South Korea using geological and soil property analyses. Geological time, as it relates to land creep areas in South Korea, had been most impactful for the Gyeongsang Supergroup and its sedimentary bedrock during the Cretaceous period. In this area, perfect ridge cliffs in land creeping areas included 20 plots (approximately 54.0%), while tension cracking areas with ambiguous ridge cliff characteristics included 17 plots (approximately 46.0%). Hesitant slide slope types included 20 plots (approximately 54.0%) within theslide slope of an incident pattern (slide slope figure) in land creeping areas. Colluvial debris types among land creep patterns were the most frequent and included 25 plots (approximately 68.0%). The direct causes of land creep were cutting of foothills, quarrying, land-clearing in mountains, mining exploration, and the creation of burial grounds, all of which added to geological impacts. Among land creeping areas, 27 plots (approximately 73.0%) were the result of man-made activities, and 10 plots (approximately 27.0%) were derived via natural causes such as earthquakes, heavy rainfall, and caving.

Precise Diagnosis Technology for Power Plant Boiler (발전용 보일러 정밀진단기술)

  • Park, Min-Su;Kim, Jong-Oh
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.914-919
    • /
    • 2000
  • In most case high temperature components in fossil power plant are damaged by fatigue, creep and degradation. Design of power plant components is based on ideal loading such as temperature, pressure and so on. But in many cases unexpected loadings are applied at components. A key ingredient in plant life extension is the preventive diagnosis technology and remaining-life-assessment technology. This paper describes diagnosis technology and life-assessment technology for power plant boiler. It helps in setting up proper inspection schedules, maintenance procedures, and operating procedure.

  • PDF

Solder Joint Reliability of Bottom-leaded Plastic Package (BLP 패키지의 솔더 조인트의 신뢰성 연구)

  • 박주혁
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.79-84
    • /
    • 2002
  • The bottom-leaded plastic(BLP) packages have attracted substantial attention since its appearance in the electronic industry. Since the solder materials have relatively low creep resistance and are susceptible to low cycle fatigue, the life of the solder joints under the thermal loading is a critical issue for the reliability The represent study established a finite element model for the analysis of the solder joint reliability under thermal cyclic loading. An elasto-plastic constitutive relation was adopted for solder materials in the modeling and analysis. A 28-pin BLP assembly is modeled to investigate the effects of various epoxy molding compound, leadframe materials on solder joint reliability. The fatigue life of solder joint is estimated by the modified Coffin-Hanson equation. The two coefficients in the equation are also determined. A new design for lead is also evaluated by using finite element analysis. Parametric studies have been conducted to investigate the dependence of solder joint fatigue life on various package materials.

  • PDF

Material Degradation of 2Cr and 12Cr Tube Steels for High Temperature and Long-Time Exposure (2Cr 및 12Cr 크롬강튜브의 고온 장시간 사용에 따른 열화현상)

  • Choe, Byung-Hak;Lee, Gil Jae;Kim, Sang-Ho;Hong, Key-Yong;Kim, Woo Sik;Baek, Un Bong;Nahm, Seung Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.5
    • /
    • pp.28-34
    • /
    • 2012
  • Material degradation of Cr steels in using for boiler tubes was studied in the relation of microstructural changes like carbide behavior and mechanical properties of hardness and creep-rupture life. The carbide dissolution was occurred in 2Cr steel of T22 during high temperature operation. And the grain refinement within martensite lath of 12Cr steel of X20 was derived by the high temperature-long time exposure. But the specific phenomena of material degradation which might be represented by hardness or creep-rupture time of the used tubes were not shown in all the tubes of T22 and X20 even in the fire-side using.

Evaluation of Healing Properties of Asphalt Mixtures (아스팔트 혼합물의 손상회복 특성 평가)

  • Kim, Boo-Il
    • International Journal of Highway Engineering
    • /
    • v.7 no.2 s.24
    • /
    • pp.69-76
    • /
    • 2005
  • While the repeated traffic loading accumulates the damage of asphalt pavement, the damage has being healed during rest periods. And then, this healing enhances the fatigue life of asphalt pavement. A method was developed to determine the healing rate of asphalt mixture in terms of recovered dissipated creep strain energy (DCSE) per unit time, and the healing properties of four different asphalt mixtures were evaluated. The test procedure consists of repeated loading test and periodical resilient modulus tests. A normalized healing rate in terms of $DCSE/DCSE_{applied}$ was defined to evaluate the healing properties independently of the amount of damage incurred in the mixture. From the test results, it was concluded that the healing rates of asphalt mixtures were increased exponentially as the temperature was increased and more affected by the structural characteristics of mixture such as asphalt content than the binder characteristics such as the polymer modification.

  • PDF

Effect of HAZ Softening Zone on Creep Rupture Properties of 1.0Cr-1.0Mo-0.25V Turbine Steels -Part II : Carbide Morphology- (1.0Cr-1.0Mo-0.25V 터어빈 로터강의 열영향부 연화층이 크립 파단 특성에 미치는 영향 - Part II : 탄화물 형태 -)

  • ;Indacochea, J. E.
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.101-108
    • /
    • 1997
  • In repaired weldment of ASTM A-470 class 8 high pressure stream turbine rotor steel, creep rupture life was studied in relation with carbide morphology. Carbides were identified using carbide extraction replica method. A retired rotor has molybdenum rich carbide $M_2C$, lndacochea vanadium rich carbide $M_4C_3$, and chromium rich carbides $M_{23}C_6$and $M_7C_3$. Weldments ruptured at ICHAZ showed that some of carbides have been transformed into spherical types of coarsened carbides at ruptured area. Those carbides were revealed as molybdenum rich $M_6C$ carbide and they provided cavitation sites due to molybdenum depletion around $(M_6C)$ carbide. However coarsened $M_6C$ and $M_{23}C_6$ carbides were observed at ruptured area in case of ruptured at CGHAZ.

  • PDF

An Experimental Study on the Characteristics of Seismic Isolators under Extreme Conditions (교량 지진격리받침의 극한특성에 대한 실험적 고찰)

  • Kwahk, Im-Jong;Yoon, Hye-Jin;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.105-108
    • /
    • 2008
  • For the early seismic isolation design in Korea, foreign products of isolation bearings were used. But these days, the application of domestic products of isolation bearings is increasing. However various experimental studies can be found very seldom on the extreme and lonr term behaviors of isolation bearings. In this study, we considered the laminated rubber type isolation bearings that have many application cases in Korea and we evaluated their shear strength, long term characteristics such as aging and creep affecting shear strength of bearings in long term period. For the reality of experiments, fabricated isolation bearing specimens are designed for a real structure and shear loading was applied under design compressive loads. To evaluated aging effect, the specimens were exposed to high temperature environment for certain period and their shear properties were measured to compare with their original values. Also we measured creep amount of isolation bearings under constant compressive load for 1,000 hours and estimated creep amount after 60 years compatible with general life cycle of bridges.

  • PDF

Ultrasonic Measurement of Gap between Calandria Tube and Liquid Injection Nozzle in CANDU Reactor (초음파를 이용한 중수로내 칼란드리아관과 원자로 정지물질 주입관과의 간격 측정)

  • Sohn, Seok-Man;Kim, Tae-Rong;Lee, Jun-Sin;Lee, Young-Hee;Park, Chul-Hun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.834-839
    • /
    • 2001
  • Calandria tube wrapping each pressure tube is one of the key structural components of CANDU reactor(Calandria) which is consisted of many pressure tubes containing nuclear fuel assemblies. As the Calandria tube(made of zirconium alloy) is sagging due to its thermal and irradiation creep during the plant operation, it possibly contacts with liquid injection nozzle crossing beneath the Calandria tube, which subsequently results in difficulties on the safe operation. It is therefore necessary to check the gap for the confirmation of no contacts between the two tubes, Calandria tube and liquid injection tube, with a proper measure during the life of plant. In this study, an ultrasonic measurement method was selected among several methods investigated. The ultrasonic device being developed for the measurement of the gap was introduced and its preliminary performance test results were presented here. The gap between LIN and CT at site was measured using by this ultrasonic device at site.

  • PDF

Compression Behavior of Wood Stud in Light Framed Wall as Functions of Moisture, Stress and Temperature

  • Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.19-28
    • /
    • 2006
  • There has been considerable research in recent times in light-timber med structures in fires. These structures have included horizontal (floor-like) panels in bending and walls under eccentric and approximately concentric vertical loading. It has been shown that compression properties are the most dominant mechanical properties in affecting structural response of these structures in fire. Compression properties have been obtained by various means as functions of one variable only, temperature. It has always been expected that compression properties would be significantly affected by moisture and stress, as well. However, these variables have been largely ignored to simplify the complex problem of predicting the response of light-timber framed structures in fire. Full-scale experiments on both the panels and walls have demonstrated the high level of significance of moisture and stress for a limited range of conditions. Described in this paper is an overview of these conditions and experiments undertaken to obtain compression properties as a functions of moisture, stress and temperature. The experiments limited temperatures to $20{\sim}100^{\circ}C$. At higher temperatures moisture vaporizes and moisture and stress are less significant. Described also is a creep model for wood at high temperatures.

A Study on the Manufacturing of a High-Efficiency Load Cell Using a Single Surface Design (단일면으로 디자인한 고성능 로드셀 제작에 관한 연구)

  • Lee, Jung-Hyun;Lee, Woo-Ram
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.724-730
    • /
    • 2010
  • A load cell is a converter that generates voltage signals when a certain force is effected in a given direction. An essential measurement device for electronic scales that indicate weight by numbers. These load cells are being applied in various areas such as daily life, distribution, laboratory and industrial. Recently the study to manufacture load cells in a more simple method while increasing performance is being persisted. In this study based on the comparison of load cells manufactured through single surface processing using strain gauges. Those manufactured through dual surface processing using strain gauges. Ultimately persist a more simple method of load cell manufacturing while increasing its performance. The elements that were compared were linearity, hysteresis, creep and eccentricity which are short tenn performance factors. The conclusion was that single surface processing showed almost identical data as that of dual surface processing, and the load cell error rate(0.005%) also excess regulation. The manufacturing time was shortened while mass-production was possible. Which indicates a development in the weighing industry.