• Title/Summary/Keyword: Creep activation energy

Search Result 65, Processing Time 0.022 seconds

State Dependence of Activation Energies for High Temperature Creep of A17075 Alloy (A17075합금의 고온 크리프 활성화에너지의 상태의존성)

  • 조용이;김희송
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.131-140
    • /
    • 1993
  • The activation energy for high temperature creep is associated with stresses, temperatures, straians And the creep strain appears to be a function of a temperature, compensated time, namely $te^{-}$.DELTA.H/RT/, and the stress. In fact this functional relation appears to be isomorphic to material structure by x-ray analyses. Applying this functional relation, the dependance of activation energy for A17075 creep was investigated. The activation energy for creep is insensitive to stress, temperature, structure, and strain. And phenomenological model agrees with experimental creep data.

The Effect of Surface Treatment on Creep Behaviors of Mg Alloy (마그네슘 합금의 크리이프 거동에 표면처리가 미치는 영향)

  • Kang, Dae-Min;An, Jung-O;Kang, Min-Cheol
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.347-353
    • /
    • 2009
  • The apparent activation energy, the applied stress exponent, and rupture life have been measured from creep experiments over the range of $200^{\circ}C$ to $220^{\circ}C$ and the applied stress range of 64MPa to 94MPa. The materials were used AZ31 magnesium alloys treated by plasma electrolytic oxidation of $20{\mu}m$ and $40{\mu}m$ at surface to investigate the its influence on creep behavior, and creep tests were carried out under constant applied stress and temperature. The experimental results showed that the dipper the thickness of surface treatment the higher the activation energy and stress exponent. And the higher temperature and applied stress, the lower stress exponent and activation energy, respectively. Also the dipper the thickness of surface treatment the longer creep rupture time.

Creep Behavior Analysis of 25Cr-20Ni Stainless Steels by Omega Method (오스테나이트계 25Cr-20Ni 스테인리스강의 Ω법을 이용한 고온 크리프 거동 해석)

  • Park, In-Deok;Nam, Gi-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.349-356
    • /
    • 2002
  • For two kinds of 25Cr-20Ni stainless steels, STS310J1TB and STS310S with and without a small amount of Nb and N, creep behavior has been studied in a stress and temperature range from 147 to 392 MPa and from 923 to 773 K with a special reference to tertiary creep. The average creep life of STS310J1TB was about 100 times longer than that of the STS310S. The apparent activation energy for the initial creep rate was 330 kJ/mol in STS310J1TB, while that of the STS310S was 274kJ/mol in a power law creep region and 478 kJ/mol in a region of power law breakdown (PLB). The activation energy for STS310S below PLB is close to the for self-diffusion. When compensating for the temperature dependence of the Young's modulus and the omega value, it was found that the apparent activation energy for STS310J1TB was reduced to the activation energy for diffusion of chromium atom in gamma steel. The stress exponent of STS310S was about 12.3 above PLB and 5.1 in a power law creep region. Notwithstanding that the creep condition for STS310J1TB was in a power law creep region, its stress exponent was 7.9 larger than that of STS310S corresponding to the same creep conditions. This was ascribed to the presence of fine precipitates in STS310J1TB.

Creep Behavior Analysis of 25Cr-20Ni Stainless Steels With Omega Methods (오스테나이트계 25Cr-20Ni 스테인리스강의 $\Omega$ 법을 이용한 고온 크리프 거동 해석)

  • Park, In-Duck;Nam, Ki- Woo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.117-122
    • /
    • 2001
  • For two kinds of 25Cr-20Ni stainless steels, SUS310J1TB TB and SUS310S with and without a small amount of Nb and N, creep behavior has been studied in a stress and temperature range from 147 to 392MPa and from 923 to 973K with a special reference to tertiary creep. The average creep life of SUS310J1TB was about 100 times longer than that of the SUS310S. The apparent activation energy for the initial creep rate was 330 kJ/mol in SUS310J1TB, while that of the SUS310S was 274 kJ/mol in a power law creep region and 478 kJ/mol in a region of power law breakdown (PLB). The activation energy for SUS310S below PLB is close to the that for self-diffusion. When compensating for the temperature dependence of the Young's modulus and the omega value, it was found that the apparent activation energy for SUS310J1TB was reduced to the activation energy for diffusion of chromium atom in a gamma steel. The stress exponent of SUS310S was about 12 above PLB and 5.1 in a power law creep region. Notwithstanding that the creep condition for SUS310J1TB was in a power law creep region, its stress exponent was 8.3 larger than that of SUS310S corresponding to the same creep conditions. This was ascribed to the presence of fine precipitates in SUS310J1TB.

  • PDF

Creep Deformation and Rupture Behavior of Alloy 690 Tube (Alloy 690 전열관의 크리프 변형 및 파단 거동)

  • Kim, Woo-Gon;Kim, Jong-Min;Kim, Min-Chul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • Creep rupture data for Alloy 690 steam generator tubes in a pressurized water reactor are essentially needed to demonstrate a severe accident scenario on thermally-induced tube failures caused by hot gases in a damaged reactor core. The rupture data were obtained using the tube specimens under different applied-stress levels at 650℃, 700℃, 750℃, 800℃, and 850℃. Important creep constants were proposed using various creep laws in terms of Norton power law, Monkman-Grant (M-G) relation, damage tolerance factor (λ), and Zener-Hollomon parameter (Z). In addition, a creep activation energy (Q) value for Alloy 690 tube was reasonably determined using experimental data. Creep behaviors such as creep strength, creep rates, rupture elongation showed the results of temperature dependence well. Modified M-G plot improved a correlation of the creep rate and rupture life. Damage tolerance factor for Alloy 690 tubes was found to be λ =2.20 in an average value. Creep activation energy for Alloy 690 tube was optimized for Q=350 (kJ/mol). A plot of Z parameter obeyed a good linearity, and the same creep mechanism was inferred to be operative in the present test conditions.

A Study on Small Punch-Creep Test Using Finite Element Analysis II (유한요소해석을 이용한 소형펀치-크리프 시험에 관한 연구 (II) - SP-Creep 시험과 일축 크리프 시험의 상관성을 중심으로 -)

  • Lee, Song-In;Kwon, Il-Hyun;Kim, Yon-Jig;Ahn, Byung-Guk;Ahn, Haeng-Keun;Baek, Seung-Se;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.111-116
    • /
    • 2001
  • Small punch-creep(SP-Creep) test technique has been applied for evaluating the creep characteristics for high temperature materials. However, in order to evaluate the damage and predict the remaining life, it is necessary to establish a quantitative correlation between SP-Creep and uniaxial-creep test results. This paper presents analytical and experimental results of useful correlation between SP-Creep and uniaxial-creep properties for 9Cr1MoVNb steel at $600{\sim}650^{\circ}C$ in terms of stress(load) and activation energy during creep deformation. Especially, the activation energy obtained from SP-Creep test is linearly related to that from uniaxial-creep test at $650^{\circ}C$ as follows: $Q_{sp-p}{\fallingdotseq}1.37\;Q_{TEN},\;Q_{sp-{\sigma}}{\fallingdotseq}1.53\;Q_{TEN}$.

  • PDF

Understanding the role of hydrogen on creep behaviour of Zircaloy-4 cladding tubes using nanoindentation

  • Suman, Siddharth
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2041-2046
    • /
    • 2020
  • The present article investigates the influence of hydrogen concentration on the creep performance of cold-worked stress-relieved unirradiated Zircaloy-4 cladding tube using nanoindentation technique. The as-received Zircaloy-4 tube is hydrided to the concentrations of 600 ppm and 900 ppm using gaseous hydrogen charging method. Constant load indentation creep tests are performed for a dwell period of 600 s in the temperature range of 300℃-500 ℃ at 1000 μN, 2000 μN, and 3000 μN. The impact of hydrogen is evaluated in terms of steady state power law creep exponent and activation energy. The power law creep exponent decreases with increase in hydrogen concentration, however, it remains fairly constant with increase in temperature up to 500 ℃. Moreover, activation energy too decreases significantly with increase in hydrogen concentration. The mean stress exponent and activation energy are found to be 3.58 and 28.67 kJ/mol, respectively, for as-received sample.

A Study on the High Temperature Deformation Behavior of a Solid Solution Aluminium Alloy (알루미늄 고용체 합금의 고온변형 거동에 관한 연구)

  • Kim, Ho-Gyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.346-351
    • /
    • 1997
  • The creep characteristics of an Al-5wt.% Ag alloy including the stress exponent, the activation energy for creep and the shape of the creep curve were investigated at a normalized shear stress extending from $ 10^{-5}{\;}to{\;}3{\times}10^{-4}$ and in the temperature range of 640-873 K, where silver is in solid solution. The experimental results shows that the stress exponent is 4.6, the activation energy is 141 kJ/mole, and the stacking fault energy is $180{\;}mJ/m^2$, suggesting that the creep behavior of Al-5 wt.% Ag is similiar to that reported for pure aluminum, and that under the current experimental conditions, the alloy behaves as a class II(metal class). The above creep characteristics obtained for Al-5 wt.% Ag are discussed in the light of prediction regarding deformation mechanisms in solid solution alloys.

Creep Behaviours of Inconel 690 Alloy (인코넬 690 합금의 크리프거동)

  • 황경충;윤종호;최재하;김성청
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.54-61
    • /
    • 2002
  • Inconel 690 alloy has widely been used in power plant and high temperature facilities because it has high thermal resistance and toughness. But we have little design data about the creep behaviors of the alloy. Therefore, in this study, an apparatus has been designed and built for conducting creep tests under constant load conditions. A series of creep tests on Inconel 690 alloy have been performed to get the basic design data and life prediction of inconel products and we have gotten the following results. First, the stress exponents decrease as the test temperatures increase. Secondly, the creep activation energy gradually decreases as the stresses become bigger. thirdly, the constant of Larson-Miller Parameters on this alloy is estimated about 10. And last the fractographs at the creep rupture show both the ductile and the brittle fracture according to the creep conditions.

Creep Behaviours of Glasses Rim Material Alloy (안경테소재 합금(Ti-6AI-4V)의 크리프 특성)

  • 황경충;윤종호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.248-253
    • /
    • 2003
  • Titanium alloy has widely been used as glasses rim material because it has high specific strength and also is light, harmless to men. But, we have little design data about the creep behaviors of the alloy. Therefore, in this study, an apparatus has been designed and built for conducting creep tests under constant load conditions. A series of creep tests on them have been performed to get the basic design data and life prediction of titanium products and we have gotten the following results. First, the stress exponents decrease as the test temperatures increase. Secondly, the creep activation energy gradually decreases as the stresses become bigger. Thirdly, the constant of Larson-Miller parameters on this alloy is estimated about 13. And last, the fractographs at the creep rupture show both the ductile and the brittle fracture according to the creep conditions.

  • PDF