• 제목/요약/키워드: Creep Stress Exponent

검색결과 60건 처리시간 0.026초

마그네슘 합금의 크리이프 거동에 표면처리가 미치는 영향 (The Effect of Surface Treatment on Creep Behaviors of Mg Alloy)

  • 강대민;안정오;강민철
    • 소성∙가공
    • /
    • 제18권4호
    • /
    • pp.347-353
    • /
    • 2009
  • The apparent activation energy, the applied stress exponent, and rupture life have been measured from creep experiments over the range of $200^{\circ}C$ to $220^{\circ}C$ and the applied stress range of 64MPa to 94MPa. The materials were used AZ31 magnesium alloys treated by plasma electrolytic oxidation of $20{\mu}m$ and $40{\mu}m$ at surface to investigate the its influence on creep behavior, and creep tests were carried out under constant applied stress and temperature. The experimental results showed that the dipper the thickness of surface treatment the higher the activation energy and stress exponent. And the higher temperature and applied stress, the lower stress exponent and activation energy, respectively. Also the dipper the thickness of surface treatment the longer creep rupture time.

AZ31 마그네슘 합금의 고온 크리프 특성 (Creep Properties of AZ31 Magnesium Alloy at Elevated Temperature)

  • 정진성;김호경
    • 한국안전학회지
    • /
    • 제24권6호
    • /
    • pp.20-26
    • /
    • 2009
  • The creep deformation behavior of AZ31 magnesium alloy was examined in the temperature range from 573 to 673K (0.62 to 0.73 Tm) under various constant stresses covering low strain rate range from $4{\times}10^{-9}\;s^{-1}$ to $2{\times}10^{-2}\;s^{-1}$. At low stress level, the stress exponent for the steady-state creep rate was ~3 and the present results were in good agreement with the prediction of Takeuchi and Argon model. At high stress level, the stress exponent was ~5 and the present results were in good agreement with the prediction of Weertman model. The transition of deformation mechanism from solute drag creep to dislocation climb creep could be explained in terms of solute-atmospherebreakaway concept.

탄성-소성-크리프 상태에서 SE(B) 시편의 천이크리프 균열 선단 응력장 평가 (Estimation of Transient Creep Crack-tip Stress Fields for SE(B) specimen under Elastic-Plastic-Creep Conditions)

  • 이한상;제진호;김동준;김윤재
    • 대한기계학회논문집A
    • /
    • 제39권10호
    • /
    • pp.1001-1010
    • /
    • 2015
  • 본 논문에서는 탄성-소성-크리프 상태에서 시간의존적 균열 선단 응력장을 평가하기 위해 Single-Edge-notched-Bend (SEB) 시편을 사용하여 유한요소 크리프 해석을 수행하였다. 천이크리프의 초기소성 영향을 조사하고자 다양한 초기하중을 대해 고려하였으며, 또한 소성물성과 크리프 물성의 영향을 조사하기 위해 소성 경화 지수(m)과 크리프 지수(n)이 같은 경우와 다른 경우를 모두 고려하였다. 결과로서, 기존 식의 수정을 통해서 천이크리프 상태에서의 균열 선단 응력장의 예측 식을 제안하였으며, 유한요소해석 결과와 비교를 통해서 제시된 수식의 타당성을 검증하였다. 그리고 m 과 n 이 같은 경우뿐만 아니라 m과 n이 다른 경우에도 천이크리프 상태에서 균열 선단 응력장을 예측 할 수 있는 식을 제안하였다.

Elevated Temperature Deformation Behavior in an AZ31 Magnesium Alloy

  • Yang Kyoung-Tak;Kim Ho-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • 제20권8호
    • /
    • pp.1209-1216
    • /
    • 2006
  • An AZ31 magnesium alloy was tested at constant temperatures ranging from 423 to 473 K (0.46 to 0.51 Tm) under constant stresses. All of the creep curves exhibited two types depending on stress levels. At low stress (${\sigma}/ G < 4 {\times}10^{-3}$), the creep curve was typical of class A (Alloy type) behavior. However, at high stresses (${\sigma}/ G > 4 {\times}10^{-3}$), the creep curve was typical of class M (Metal type) behavior. At low stress level, the stress exponent for the steady-state creep rate was of 3.5 and the true activation energy for creep was 101 kJ/mole which is close to that for solute diffusion. It indicates that the dominant deformation mechanism was glide-controlled dislocation creep. At low stress level where n=3.5, the present results are in good agreement with the prediction of Fridel model.

0.5Tm 이하에서의 AZ31 마그네슘합금의 크리이프 변형과 단시간 파단수명예측 (Prediction of Creep Deformation and Short Time Rupture Life of AZ31 Magnesium Alloy below 0.5Tm)

  • 강대민;안정오;전성호;구양;심성보
    • 소성∙가공
    • /
    • 제17권8호
    • /
    • pp.558-563
    • /
    • 2008
  • The initial strain, the applied stress exponent, the activation energy, and rupture time in AZ31 magnesium alloy have been measured in order to predict the deformation mechanism and rupture life of creep over the temperature range of 423-443K. Creep tests were carried out under constant applied stress and temperature, and the lever type tester and automatic temperature controller was used for it, respectively. The experimental results showed that the applied stress exponent was about 9.74, and the activation energy for creep, 113.6KJ/mol was less than that of the self diffusion of Mg alloy including aluminum. From the results, the mechanism for creep deformation seems to be controlled by cross slip at the temperature range of 423-443K. Also the higher the applied stress and temperature, the higher the initial strain. And the rupture time for creep decreased as quadratic function with increasing the initial strain in double logarithmic axis.

BN 입자 강화 Al-5wt% Mg 기지 복합재료의 고온 크립 변형에서의 임계응력 해석 (A Study of Threshold stress during High Temperature Creep of $\textrm{BN}_f$/Al-5, wt% Mg Metal Matrix Composite)

  • 송명훈;권훈;김용석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.187-191
    • /
    • 2000
  • High temperature creep behaviour of Al-5 wt% Mg alloy reinforced with 7.5% BN flakes was studied. The composite specimens showed two main creep characteristics : (1) the value of the apparent stress exponent of the composite was high and varied with applied stress (2) the apparent activation energy for creep was much larger than that for self-diffusion in aluminum The true stress exponent of the composite was set equal to 5. Temperature dependence of the threshold stress of the composite was very strong. Which could not be rationalized by allowing for the temperature dependence of the elastic modulus change. AIN particles which were incorporated into the Al matrix during fabrication of the composite by the PRIMEXTM method were found to be effective barriers to dislocation motion and to give rise the threshold stress during creep of the composite

  • PDF

Pilgering 법에 의해 제조된 Zr-Nb-O 및 Zr-Nb-Sn-Fe 합금 피복관의 원주방향 Creep 거동 (Circumferential Creep Behaviors of Zr-Nb-O and Zr-Nb-Sn-Fe Alloy Cladding Tubes Manufactured by Pilgering)

  • 이상용;고산;박용권;김규태;최재하;홍순익
    • 소성∙가공
    • /
    • 제17권5호
    • /
    • pp.364-372
    • /
    • 2008
  • In this study, the circumferential creep behaviors ofpilgered advanced Zirconium alloy tubes such as Zr-Nb-O and Zr-Nb-Sn-Fe were investigated in the temperature range of $400\sim500^{\circ}C$ and in the stress range of 80$\sim$150MPa. The test results indicate that the stress exponent for the steady-state creep rate of the Zr-Nb-Sn-Fe alloy decreases with the increase of stress(from 6$\sim$7 to 4), while that of the Zr-Nb-O alloy is nearly independent of stress(5$\sim$6). The activation energy of creep deformation is found to be nearly the same as the activation energy for Zr self diffusion. This indicates that the creep deformation may be controlled by dislocation climb mechanism in Zr-Nb-O. On the other hand, the transition of stress exponent(from 6-7 to 4) in Zr-Nb Sn-Fe strongly suggests the transition of the rate controlling mechanism at high stresses. The lower stress exponent at high stresses in Zr-Nb-Sn-Fe can be explained by the dynamic deformation aging effect caused by interaction of dislocations with Sn substitutional atoms.

알루미늄 고용체 합금의 고온변형 거동에 관한 연구 (A Study on the High Temperature Deformation Behavior of a Solid Solution Aluminium Alloy)

  • 김호경
    • 대한기계학회논문집A
    • /
    • 제21권2호
    • /
    • pp.346-351
    • /
    • 1997
  • The creep characteristics of an Al-5wt.% Ag alloy including the stress exponent, the activation energy for creep and the shape of the creep curve were investigated at a normalized shear stress extending from $ 10^{-5}{\;}to{\;}3{\times}10^{-4}$ and in the temperature range of 640-873 K, where silver is in solid solution. The experimental results shows that the stress exponent is 4.6, the activation energy is 141 kJ/mole, and the stacking fault energy is $180{\;}mJ/m^2$, suggesting that the creep behavior of Al-5 wt.% Ag is similiar to that reported for pure aluminum, and that under the current experimental conditions, the alloy behaves as a class II(metal class). The above creep characteristics obtained for Al-5 wt.% Ag are discussed in the light of prediction regarding deformation mechanisms in solid solution alloys.

Understanding the role of hydrogen on creep behaviour of Zircaloy-4 cladding tubes using nanoindentation

  • Suman, Siddharth
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.2041-2046
    • /
    • 2020
  • The present article investigates the influence of hydrogen concentration on the creep performance of cold-worked stress-relieved unirradiated Zircaloy-4 cladding tube using nanoindentation technique. The as-received Zircaloy-4 tube is hydrided to the concentrations of 600 ppm and 900 ppm using gaseous hydrogen charging method. Constant load indentation creep tests are performed for a dwell period of 600 s in the temperature range of 300℃-500 ℃ at 1000 μN, 2000 μN, and 3000 μN. The impact of hydrogen is evaluated in terms of steady state power law creep exponent and activation energy. The power law creep exponent decreases with increase in hydrogen concentration, however, it remains fairly constant with increase in temperature up to 500 ℃. Moreover, activation energy too decreases significantly with increase in hydrogen concentration. The mean stress exponent and activation energy are found to be 3.58 and 28.67 kJ/mol, respectively, for as-received sample.

$SiC_t/Si_3N_4$ 세라믹 복합재료의 크리프 거동 및 파손 메카니즘에 관한 연구 (A Study on the Creep Behavior and Failure Mechanism of the $SiC_t/Si_3N_4$ Ceramic Composite)

  • 박용환
    • 한국안전학회지
    • /
    • 제13권4호
    • /
    • pp.131-136
    • /
    • 1998
  • The creep behavior and failure mechanism of the 30 vol% hot-pressed $SiC_t/Si_3N_4$ ceramic composite was experimentally investigated at $1200^{\circ}C$ and at various stress levels in air. The creep threshold stress for zero creep rate after 100 hr was found to be approximately 60 MPa. The stress exponent was estimated to be n~1, which suggests that fiber-reinforcement reduced the stress sensitivity of the HPSN matrix with the stress exponent of 2. The tertiary stage leading to creep rupture was found at 250 MPa but was very short. The microstructure of the crept specimen showed random fiber fracture and no matrix cracking. Interfacial debonding was absent.

  • PDF