Browse > Article

Elevated Temperature Deformation Behavior in an AZ31 Magnesium Alloy  

Yang Kyoung-Tak (Department of Automotive Engineering, Graduate School, Seoul National University of Technology)
Kim Ho-Kyung (Department of Automotive Engineering, Seoul National University of Technology)
Publication Information
Journal of Mechanical Science and Technology / v.20, no.8, 2006 , pp. 1209-1216 More about this Journal
Abstract
An AZ31 magnesium alloy was tested at constant temperatures ranging from 423 to 473 K (0.46 to 0.51 Tm) under constant stresses. All of the creep curves exhibited two types depending on stress levels. At low stress (${\sigma}/ G < 4 {\times}10^{-3}$), the creep curve was typical of class A (Alloy type) behavior. However, at high stresses (${\sigma}/ G > 4 {\times}10^{-3}$), the creep curve was typical of class M (Metal type) behavior. At low stress level, the stress exponent for the steady-state creep rate was of 3.5 and the true activation energy for creep was 101 kJ/mole which is close to that for solute diffusion. It indicates that the dominant deformation mechanism was glide-controlled dislocation creep. At low stress level where n=3.5, the present results are in good agreement with the prediction of Fridel model.
Keywords
Magnesium Alloy; Creep Deformation; Stress Exponent; Activation Energy; Dislocation Glide;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Kucharova, K., Saxl, I. and Cadek, J., 1974, Acta Metall., Vol. 22, pp.465   DOI   ScienceOn
2 Luo, A. A., 2004, 'Recent Magnesium Alloy Development for Elevated Temperature Applications,' Int. Mat. Rev., Vol. 49, No.1, pp. 13-30   DOI   ScienceOn
3 King, H. W., 1966, J. Mater. Sci., Vol. 1, pp. 79   DOI
4 Evangerlista, E. et al., 2005, 'Analysis of the Effect of Si Content on the Creep Response of an Mg-SAI-Mn Alloy,' Mat. Sci. Eng. A, Vol. 410-411, pp. 62-66   DOI   ScienceOn
5 Yavari, P. and Langdon, T. G., 1982, Acta Metall., Vol. 30, pp.2196   DOI   ScienceOn
6 Vagarali, S. S. and Langdon, T. G., 1982, 'Deformation Mechanisms in H. C. P. Metals at Elevated Temperatures - II. Creep Behavior of a Mg-8% Al Solid Solution Alloy,' Acta Metall., Vol. 30, pp. 1157-1170   DOI   ScienceOn
7 Isshiki, K. et al., 1997, 'A New Miniature Mechanical Testing Procedure: Application to Intermetallics,' Metal. & Mater. Trans. A, Vol. 28A, pp.2577-2582   DOI
8 Kim, H. K., Chung, K. and Chung, C. S., 1998, 'High Temperature Rupture Lifetime of 304 Stainless Steel Under Multiaxial Stress States,' KSME Journal A, Vol. 22. No.3, pp.595-602   과학기술학회마을
9 Watanabe, et al., 2001, 'Deformation Mechanism in a Coarse-Grained Mg-AI-Zn Alloy at Elevated Temperatures,' Int. J. Plasticity, Vol. 17, pp. 387-397   DOI   ScienceOn
10 Weertman, J., 1957, 'Steady-State Creep of Crystals, J. Appl. Phys., Vol. 28, pp. 1185-1189   DOI
11 Friedel, J., 1964, Dislocations, Pergamon Press, Oxford
12 Friedrich, H. and Schumann, S., 2001, 'Research for a New Age of Magnesium in the Automotive Industry,' J. Mat. Processing Tech., Vol. 117, pp. 276-281   DOI   ScienceOn
13 Frost, H. J. and Ashby, M. F., 1982, Deformation- Mechanisms Maps, Pergamon Press, Oxford
14 Endo, T., Shimada T. and Langdon T. G., 1984, 'The Deviation from Creep by Viscous Glide in Solid Solution Alloys at High Stress-I. Characteristics of the Dragging Stress,' Acta Metall., Vol. 32, pp. 1991-1999   DOI   ScienceOn
15 Spigarelli, S. et al., 2000, 'Analysis of the Creep Behavior of a Thixoformed AZ91 Magnesium Alloy,' Mat. Sci. Eng. A, Vol. 289, pp. 172-181   DOI   ScienceOn
16 Cannon W. R. and Sherby O. D., 1970, 'High Temperature Creep Behavior of Class I and Class II Solid-Solution Alloys,' Metall. Trans., Vol. 1, pp. 1030-1032
17 Vagarali, S. S. and Langdon, T. G., 1981, 'Deformation Mechanisms in H. C. P. Metals at Elevated Temperatures-I. Creep Behavior of Magnesium,' Acta Metall., Vol. 30, pp. 1969-1982   DOI   ScienceOn
18 Suzuki, M. et al., 1998, 'Creep Behavior and Deformation' Microstructures of Mg- Y Alloys,' Mat. Sci. Eng. A, Vol. 252, pp.248-255   DOI   ScienceOn
19 Takeuchi, S. and Argon, A. S., 1976, 'SteadyState Creep of Alloys Due to Viscous Motion of Dislocations,' Acta Metall., Vol. 24, pp.883-889   DOI   ScienceOn
20 Somekawa, H. et al., 2005, 'Dislocation Creep Behavior in Mg-AI-Zn Alloys,' Mat. Sci. Eng. A, Vol. 407, pp.53-61   DOI   ScienceOn
21 Murty, K. L. 1973, Scripta Metall., Vol. 7, pp. 899   DOI   ScienceOn
22 Shi, L. and Northwood, D.O., 1994, 'StrainHardening and Recovery During the Creep of Pure Polycrystalline Magnesium,' Acta Metall., Vol. 42, pp. 871-877   DOI   ScienceOn
23 Shewmon, P. G. and Rhines, F. N., 1954, Trans. Am. Inst. Min. Engrs, Vol. 200, pp. 1021
24 Robinson, S. L. and Sherby, O. D., 1969, 'Mechanical Behavior of Polycrystalline Tungsten at Elevated Temperature,' Acta Metall., Vol. 17, pp. 109-125   DOI   ScienceOn