• Title/Summary/Keyword: Creep Stress

Search Result 611, Processing Time 0.03 seconds

Interaction between dislocation and nitride precipitates during high temperature deformation behaviors of 12%Cr-15%Mn austenitic steels (12%Cr-15%Mn 오스테나이트강의 고온변형거동중의 전위와 질화물의 상호작용)

  • 배동수
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.332-337
    • /
    • 2001
  • The objective of research is to clarify the interaction between dislocations and precipitates during high temperature creep deformation behaviors of high Mn austenitic steels. After measuring the internal stress in minimum creep rate at 873K, a transmission electron microscope (TEM) observation was performed to investigate the interaction between dislocations and precipitates during high temperature creep deformation. The band width of effective stress and internal stress increased when the nitride precipitates distribute more densely. Fine nitrides disturbed the dislocation movement with pinning the dislocations and perfect dislocations were separated into Shockley partial dislocations by fine nitrides. Coarse nitrides disturbed the dislocation movement with climb mechanism.

  • PDF

Creep-Fatigue Crack Growth Behavior of a Structure with Crack Like Defects at the Welds

  • Lee, Hyeong-Yeon;Kim, Seok-Hoon;Lee, Jae-Han;Kim, Byung-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2136-2146
    • /
    • 2006
  • A study on a creep-fatigue crack growth behavior has been carried out for a cylindrical structure with weldments by using a structural test and an evaluation according to the assessment procedures. The creep-fatigue crack growth behavior following the creep-fatigue crack initiation has been assessed by using the French A16 procedure and the conservatism for the present structural test has been examined. The structural specimen is a welded cylindrical shell made of 316 L stainless steel (SS) for one half of the cylinder and 304 SS for the other half. In the creep-fatigue test, the hold time under a tensile load which produces the primary nominal stress of 45 MPa was one hour at $600^{\circ}C$ and creep-fatigue loads of 600 cycles were applied. The evaluation results for the creep-fatigue crack propagation were compared with those of the observed images from the structural test. The assessment results for the creep-fatigue crack behavior according to the French Al6 procedure showed that the Al6 is overly conservative for the creep-fatigue crack propagation in the present case with a short hold time of one hour.

Reliability Evaluation on Creep Life Prediction of Alloy 617 for a Very High Temperature Reactor (초고온 가스로용 Alloy 617의 크리프 수명예측 신뢰성 평가)

  • Kim, Woo-Gon;Park, Jae-Young;Kim, Seon-Jin;Hong, Sung-Deok;Kim, Yong-Wan
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.10
    • /
    • pp.721-728
    • /
    • 2012
  • This paper evaluates the reliability of creep rupture life under service conditions of Alloy 617, which is considered as one of the candidate materials for use in a very high temperature reactor (VHTR) system. A Z-parameter, which represents the deviation of creep rupture data from the master curve, was used for the reliability analysis of the creep rupture data of Alloy 617. A Service-condition Creep Rupture Interference (SCRI) model, which can consider both the scattering of the creep rupture data and the fluctuations of temperature and stress under any service conditions, was also used for evaluating the reliability of creep rupture life. The statistical analysis showed that the scattering of creep rupture data based on Z-parameter was supported by normal distribution. The values of reliability decreased rapidly with increasing amplitudes of temperature and stress fluctuations. The results established that the reliability decreased with an increasing service time.

A Study on Weld Residual Stress Relaxation by furnaced and local PWHT Procedures (노내 및 국부 후열처리에 의한 잔류응력 완화 거동 평가)

  • Lee, Seung-Gun;Kim, Jong-Sung;Jin, Tae-Eun;Dong, P.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.250-255
    • /
    • 2004
  • In this paper, we established baseline information and insight on residual stress relief mechanism associated with furnaced and local PWHT(post weld heat treatment) operation. Based on FEM analysis results, we suggested that furnaced PWHT stress relief mechanism was based on creep relaxation and local PWHT stress relief mechanism involved complicated interactions between plasticity and creep. In case of furnaced PWHT, significant stress relaxation was occurred in the early stage of PWHT. In case of local PWHT, stress relaxation magnitude was increased as PWHT time increased. Finally, We have proposed that detailed furnaced and local PWHT procedure, and qualification criteria to support current codes of practices.

  • PDF

Effects of Heat Treatment on Secondary Phase Formation and Nanoindentation Creep Behavior of Nanocrystalline CoCrFeMnNi High-entropy alloy (나노결정립 CoCrFeMnNi 고엔트로피합금의 열처리에 따른 이차상 형성 및 나노압입 크리프 거동 변화 연구)

  • Dong-Hyun Lee;Jae-il Jang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.128-136
    • /
    • 2023
  • In this study, the effects of heat treatment on the nano-scale creep behavior of CoCrFeMnNi high-entropy alloy (HEA) processed by high-pressure torsion (HPT) was investigated through nanoindentation technique. Nanoindentation experiments with a Berkovich indenter were performed on HPT-processed alloy subjected to heat treatment at 450℃, revealing that the hardness of the HPT-processed alloy (HPT sample) significantly increased with the heat treatment time. The heat treatment-induced microstructural change in HPT-processed alloy was analyzed using transmission electron microscopy, which showed the nano-sized Cr-, NiMn-, and FeCo-rich phases were formed in the HPT-processed alloy subjected to 10 hours of heat treatment (HPT+10A sample). To compare the creep behavior of HPT and HPT+10A samples, constant load nanoindentation creep experiments were performed using spherical indentation indenters with two different radii. It was revealed that the predominant mechanism for creep highly depended on the applied stress level. At low stress level, both HPT and HPT+10A samples were dominated by Coble creep. At high stress level, however, the mechanism transformed to dislocation creep for HPT sample, but continued to be Coble creep for HPT+10A sample, leading to higher creep resistance in the HPT+10A sample.

Characterizing Viscoelastic Property of Soft Tissue Over the Hip as a Risk Factor of Pressure Ulcer

  • Lim, Kitaek;Kim, Seung-su;Choi, Woochol Joseph
    • Physical Therapy Korea
    • /
    • v.28 no.1
    • /
    • pp.72-76
    • /
    • 2021
  • Background: A pressure ulcer is common in soft tissue over the greater trochanter (GT) in side-lying position, and sustained tissue deformation induced by the prolonged external force is a primary cause, which can be discussed with soft tissues' viscoelastic properties (i.e., stress relaxation, creep response). Objects: Using an automated hand-held indentation device, we measured the viscoelastic properties of soft tissue over the hip area, in order to examine how the properties are affected by site with respect to the GT. Methods: Twenty participants (15 males and 5 females) who aged from 21 to 32 were participated. An automated hand-held indentation device was used to measure the stress relaxation time and creep response. Trials were acquired for three different locations with respect to the GT (i.e., right over the GT, 6 cm anterior or posterior to the GT). For each location, five trials were acquired and averaged for data analyses. Results: Soft tissues' stress relaxation time and creep response were associated with site (F = 23.98, p < 0.005; F = 24.09, p < 0.005; respectively). The stress relaxation time was greatest at posterior gluteal region (19.22 ± 2.49 ms), and followed by anterior region (15.39 ± 2.47 ms) and right over the GT (14.40 ± 3.18 ms). Similarly, creep response was greatest at posterior gluteal region (1.16 ± 0.14), and followed by anterior region (0.95 ± 0.14) and right over the GT (0.89 ± 0.18). Conclusion: Our results showed that the stress relaxation and creep were greatest at the posterior gluteal region and least at right over the GT, indicating that the gluteal soft tissue is more protective to the prolonged external force, when compared to the trochanteric soft tissue. The results suggest that a risk of pressure ulcer over the GT may decrease with slightly posteriorly rotated side-lying position.

복소 유사 응력 함수에 의한 타원 강체 함유물을 내포하는 글잎 재료의 응력 해석

  • 김종성;이강용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.740-743
    • /
    • 1995
  • The analysis model is the power law creep material containing an elliptical rigid inclusion subjected to the arbitrarily directional stress on infinite boundary. The stress analysis is performed using the conformal mapping function and complex pseudo-stress function. The stress distributions near an elliptical rigid inclusion are obtained with various ellipse shapes, strain hardening exponents and directions of applied stress.

  • PDF

Understanding the role of hydrogen on creep behaviour of Zircaloy-4 cladding tubes using nanoindentation

  • Suman, Siddharth
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2041-2046
    • /
    • 2020
  • The present article investigates the influence of hydrogen concentration on the creep performance of cold-worked stress-relieved unirradiated Zircaloy-4 cladding tube using nanoindentation technique. The as-received Zircaloy-4 tube is hydrided to the concentrations of 600 ppm and 900 ppm using gaseous hydrogen charging method. Constant load indentation creep tests are performed for a dwell period of 600 s in the temperature range of 300℃-500 ℃ at 1000 μN, 2000 μN, and 3000 μN. The impact of hydrogen is evaluated in terms of steady state power law creep exponent and activation energy. The power law creep exponent decreases with increase in hydrogen concentration, however, it remains fairly constant with increase in temperature up to 500 ℃. Moreover, activation energy too decreases significantly with increase in hydrogen concentration. The mean stress exponent and activation energy are found to be 3.58 and 28.67 kJ/mol, respectively, for as-received sample.

High Temperature Creep Deformation of Mechanically Alloyed Al-Ti-Si Alloy (기계적 합금법에 의한 Al-Ti-Si합금의 고온 크립 변형)

  • Choe, Cheol-Jin;Park, Won-Uk
    • 연구논문집
    • /
    • s.25
    • /
    • pp.169-173
    • /
    • 1995
  • The high temperature deformation of mechanically alloyed Al-Ti-Si alloy (Al-9.64wt% Ti-1.56wt% Si) was investigated by performing constant load compression creep tests over the temperature range of $673^\circC$K to $723^\circC$K. From the calculation based on the modified power law creep equation for dispersion strengthened alloy, the true creep activation energy, was 176kJ/mole, the true stress exponent was 4.9. Considering the value of activation energy, stress exponent, the shape of primary creep region, it could be concluded that creep deformation in the MA Al-Ti-Si alloy is controlled by dislocation climb.

  • PDF

A Study on the Creep Characteristics of Marine Clay (해성점토의 Creep 특성에 관한 연구)

  • Jeong, Hyeong-Sik;An, Sang-Ro;Lee, Seung-Ho
    • Geotechnical Engineering
    • /
    • v.7 no.4
    • /
    • pp.65-74
    • /
    • 1991
  • Earth structures which located on the weak foundation settle for the long time due to the their own weight (embankment) simultaneously. Because of the consolidation and creep which are timedependent behaviour. This paper is presented creep test Processes using triaxial spparatus, and investigated creep charateristics of marine clay by creep test according to stress level And required and appropriate creep parameters of soil used in the creep equation are investigated by the creep test.

  • PDF