• 제목/요약/키워드: Creep Behavior

검색결과 591건 처리시간 0.023초

고온을 받은 나일론 섬유보강 고강도 콘크리트의 크리프 거동 (Creep Behavior of Nylon Fiber Reinforced High Strength Concrete at Elevated Temperature)

  • 이영욱;김규용;최경철;윤민호;이보경;김래환
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.141-142
    • /
    • 2014
  • Decrease of performance degradation of High Strength Concrete occurs more than that of normal strength concrete at elevated temperature. Therefore, when it comes to evaluating performance of structures, strain of concrete subjected to elevated temperature and loading are important items. In this study, creep strain of High Strength Concrete sunjected to various temperature conditions and 33% loading was evaluated. As a result, creep strain increased with increase of temperature and loading. Creep strain of concrete at high temperature is influenced by loading.

  • PDF

Mechanical testing of the behavior of steel 1.7147 at different temperatures

  • Brnic, Josip;Turkalj, Goran;Canadija, Marko
    • Steel and Composite Structures
    • /
    • 제17권5호
    • /
    • pp.549-560
    • /
    • 2014
  • The paper provides the test results and analysis on the behavior of steel 1.7147 at different temperatures. Mechanical uniaxial tests were used to determine mechanical properties, resistance to creep and Charpy impact tests to determine impact energy. Test results are presented in the form of engineering stress-strain diagrams, creep curves as well as numerical data related to impact energy. The results show that the tensile strength has the highest value at room temperature, and the same goes for the yield strength as well as for modulus of elasticity. After room temperature both of mentioned properties decrease with temperature increasing. Some of creep curves were modeled using rheological models and analytical equation. Based on Charpy impact energy an assessment of fracture toughness was made.

인발성형 FRP 복합소재 기둥부재의 크리프거동에 대한 실험적 분석 (Experimental Investigation on the Creep Behavior of Pultruded FRP Composite Columns)

  • Kang, Jin Ook;Abdul Hamid Zureick
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.299-306
    • /
    • 2003
  • This paper presents the results of an experimental investigation pertaining to the creep behavior of fiber-reinforced polymeric (FRP) pultruded components subjected to sustained eccentric axial loading. Six different axial load/eccentricity combinations were investigated through the experiments. The test duration of these experiments was 2,000 hours (90 days), during which the mid-height lateral deflections of the components were recorded continually. Analytical formulations based on the Schapery's quasielastic method and a power law model were used for the prediction of the creep lateral deflection.

  • PDF

통일구성방정식을 이용한 구조물의 열점소성 거동에 관한 해석 (Analysis of Thermo-Viscoplastic Behavior of Structures Using Unified Constitutive Equations)

  • 윤성기;이주진
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.190-200
    • /
    • 1991
  • 본 연구에서는 고온에 노출되는 열-점소성 거동의 해석을 위해 소성유동, 크 리프, 응력풀림(stress relaxation)등의 거동을 동시에 다룰 수 있는 통일구성방정식 모델에 대해 논하고 적절한 모델을 선정한다. 이 모델은 미소변형이론에 근거한 것 이므로 구조물의 거동을 소변형률(small strain)과 소회전(small rotation)의 범위내 로 가정하여 해석한다.선정된 모델에 대해서 시간변화율 형태의 방정식으로부터 유 한요소법을 통한 수치화와 사용된 구성방정식을 효율적으로 처리할 수 있는 수치해석 법상의 알고리듬을 제안한다. 제안된 알고리즘을 사용하여 유한요소법 전산코드를 적상하고, 작성된 코드를 이용하여 고온에서 하중을 받는 단순보와 국부적으로 심한 가열을 받는 구조물에 적용하여 고전적인 구성방정식으로 복합적인 해석이 어려웠던 열-점소성 거동을 효과적으로 해석할 수 있음을 보인다. 본 논문은 응력해석에 주안 점을 두었으므로 열해석에 관한 상세한 논의는 가급적 생략하기로 한다.

화강풍화토의 creep 변형특성 (Creep Deformation Characteristics of Weathered Granite Soil)

  • 박흥규;김용하;팽우선;이해수
    • 한국지반공학회논문집
    • /
    • 제23권12호
    • /
    • pp.43-52
    • /
    • 2007
  • 본 연구는 도로 성토재인 화강 풍화토의 creep 변형 거동특성 분석을 하였다. 일축압축 상태에서의 creep 변형률은 버저스 물체의 이론적 해석치와 비교적 잘 일치하였다. 탄성변형은 작용하중이 클수록 오랜 시간 경과 후 종료되었다. 1차 creep 변형률은 0.0028이며 이는 하중 재하 후 $3{\sim}5$일 이내에 완료되는 것으로 분석되었으며 성토체의 1차 creep 변형 완료 시간은 성토고에 비례하여 증가 되는 것으로 판단되었다. 2차 creep 변형률은 1차 creep 변형률의 약 50%정도로 나타났다.

CU 순금속의 사이클릭 크리프 변형 (Cyclic Creep Strain of Cu Pure Metal)

  • 정순억;이헌식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.194-199
    • /
    • 2000
  • The creep rate is affected by the temperature and in fact. if the temperature above $T_M/2(T_M:melting\;point)$. The aim of the present investigation is to study the relationship of static creep and cyclic creep behavior of pure copper and the formulation of these phenomena with the special attention to the instantaneous strain. strain rate from time and number of cycles have the same inclination Steady state creep rate depend upon maximum stress and can be expressed as linear function according to Power law creep equations Creep rupture time has relation with creep rate. and it make a group represented as the same direct line regardless of max stress, stress ratio and the temperature. Initial strain effect on continuous creep deformation. and have guantitative relationship between elastic and Plastic strain. LMP have similar tendency than OSDP and MHP according to temperature

  • PDF

크리프-피로 영향을 고려한 터보펌프 터빈의 손상해석 (Damage Analysis of Turbopump Turbine considering Creep-Fatigue effects)

  • 이무형;장병욱;김진한;정은환;전성민;이수용;박정선
    • 한국항공운항학회지
    • /
    • 제18권1호
    • /
    • pp.1-10
    • /
    • 2010
  • Structures under high temperature may have creep behavior and fatigue behavior. Durability study of the structures need the damage analysis with the creep-fatigue effects. In this paper, the damage analysis is studied for a turbine blade in the turbopump for a liquid rocket engine which is operated under high temperature condition. First of all, the load cycle is required for defining the operational characteristics of turbopump. The thermal stress analysis is done for a turbine blade of the turbopump. The stress analysis results are used to judge damage due to the creep and the fatigue. The strain-life method with miner rule is used for fatigue damage analysis. The Larson-Miller parameter master curve and robinson rule are used for the creep damage analysis. The linear damage summation method is used to consider creep-fatigue effects of turbopump turbine. Finally, the analysis results for fatigue and the influence are compared to figure out the damage phenomenon of the turbopump turbine.

알루미늄 고용체 합금의 고온변형 거동에 관한 연구 (A Study on the High Temperature Deformation Behavior of a Solid Solution Aluminium Alloy)

  • 김호경
    • 대한기계학회논문집A
    • /
    • 제21권2호
    • /
    • pp.346-351
    • /
    • 1997
  • The creep characteristics of an Al-5wt.% Ag alloy including the stress exponent, the activation energy for creep and the shape of the creep curve were investigated at a normalized shear stress extending from $ 10^{-5}{\;}to{\;}3{\times}10^{-4}$ and in the temperature range of 640-873 K, where silver is in solid solution. The experimental results shows that the stress exponent is 4.6, the activation energy is 141 kJ/mole, and the stacking fault energy is $180{\;}mJ/m^2$, suggesting that the creep behavior of Al-5 wt.% Ag is similiar to that reported for pure aluminum, and that under the current experimental conditions, the alloy behaves as a class II(metal class). The above creep characteristics obtained for Al-5 wt.% Ag are discussed in the light of prediction regarding deformation mechanisms in solid solution alloys.

분무 주조 과공정 Al-Si 계 합금의 응력이완 및 Creep 천이 거동 (Load Relaxation and Creep Transition Behavior of a Spray Casted Hypereutectic Al-Si Alloy)

  • 김민수;방원규;박우진;장영원
    • 소성∙가공
    • /
    • 제14권6호
    • /
    • pp.502-508
    • /
    • 2005
  • Hypereutectic Al-Si alloys have been regarded attractive for automotive and aerospace application, due to high specific strength, good wear resistance, high thermal stability, low thermal expansion coefficient and good creep resistance. Spray casting of hypereutectic Al-Si alloy has been reported to provide distinct advantages over ingot metallurgy (IM) or rapid solidification/powder metallurgy (RS/PM) process in terms of microstructure refinement. In this study, hypereutectic Al-25Si-2.0Cu-1.0Mg alloy was prepared by OSPREY spray casting process. The change of strain rate sensitivity and Creep transition were analyzed by using the load relaxation test and constant creep test. High temperature deformation behavior of the hypereutectic Al-Si alloy has been investigated by applying the internal variable theory proposed by Chang et al. Especially, the creep resistance of spray casted hypereutectic Al-Si alloy can be enhanced considerably by the accumulation of prestrain.