• 제목/요약/키워드: Credit classification

검색결과 110건 처리시간 0.026초

A Study on Deep Learning Model for Discrimination of Illegal Financial Advertisements on the Internet

  • Kil-Sang Yoo; Jin-Hee Jang;Seong-Ju Kim;Kwang-Yong Gim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권8호
    • /
    • pp.21-30
    • /
    • 2023
  • 인터넷 불법금융광고는 인터넷 카페, 블로그 등을 통해 통장매매, 신용카드·휴대폰결제현금화 및 개인신용정보매매 등 불법금융행위를 목적으로 한다. 금융감독당국의 노력에도 불구하고 불법금융행위는 줄어들지 않고 있다. 본 연구는 인터넷 불법금융광고 게시글에 파이썬 딥러닝 기반 텍스트 분류기법을 적용해 불법여부를 탐지하는 모델을 제안한다. 텍스트 분류기법으로 주로 사용되는 합성곱 신경망(CNN: Convolutional Neural Network), 순환 신경망(RNN: Recurrent Neural Network), 장단기 메모리(LSTM: Long-Short Term Memory) 및 게이트 순환 유닛(GRU: Gated Recurrent Unit)을 활용한다. 그동안 수작업으로 심사한 불법확인 결과를 기초 데이터로 이용한다. 한국어 자연어처리와 딥러닝 모델의 하이퍼파라미터 조절을 통해 최적의 성능을 보이는 모델을 완성하였다. 본 연구는 그동안 이뤄지지 않았던 인터넷 불법금융광고 판별을 위한 딥러닝 모델을 제시하였다는데 큰 의미가 있다. 또한 딥러닝 모델에서 91.3~93.4% 수준의 정확도를 보임으로써 불법금융광고 탐지에 딥러닝 모델을 실제 적용하여 불법금융광고 근절에 기여할 수 있기를 기대해 본다.

기술력 평가항목을 이용한 고안정성 중소기업 판별력 검증 (Verification Test of High-Stability SMEs Using Technology Appraisal Items)

  • 이준원
    • 경영정보학연구
    • /
    • 제20권4호
    • /
    • pp.79-96
    • /
    • 2018
  • 본 연구는 기술력 평가항목 중 기업의 재무안정성과 관련된 항목을 신용평가모형에 반영하여 중소기업뿐만이 아닌 전체 기업을 대상으로 한 신용평가모형의 부도변별력을 높이기 위한 기술력 평가모형의 신용평가모형 내 내재화에 착안하여 시작되었다. 따라서 기술력 평가모형이 부채비율 기준의 고안정성 중소기업을 사전에 판별하는 데 적용될 수 있는지 검증하는 것을 목표로 한다. 대상 기업을 업종(제조업 vs. 비(非)제조업)과 업력(창업기업 vs. 비(非)창업기업)으로 구분하고, 3개년 동안 해당 군집의 평균 부채비율 1/2 이하를 달성한 기업에 대해 고안정성 중소기업으로 정의한 후, C5.0 기법을 적용하여 모형의 판별력을 검증하였다. 분석결과 소항목 수준에서는 업종과 업력에 따라 중요도 간 차이가 있지만, 중항목 수준에서는 기술개발역량이 고안정성 중소기업을 판별하는 중요변수로 도출되었으며, 기업의 업력에 따라 창업 초기에는 자금조달능력(수익창출능력을 고려한 자본구조, 자본비용 및 자금조달 방법의 다양성)이 미래 고안정성 중소기업 여부를 결정하는 중요변수이지만, 업력이 증가함에 따라 지속적인 성과를 가능하게 하는 기술개발 인프라가 재무안정성에 영향을 미치는 중요 변수로 변화한다는 결론을 도출하였다. 업종과 업력에 따른 모형의 분류 정확도는 71~91% 수준이며, 기술력 평가항목을 이용하여 고안정성 중소기업을 판별할 수 있다는 가능성을 확인하였다.

이동통신고객 분류를 위한 의사결정나무(C4.5)와 신경망 결합 알고리즘에 관한 연구 (A Study on the Combined Decision Tree(C4.5) and Neural Network Algorithm for Classification of Mobile Telecommunication Customer)

  • 이극노;이홍철
    • 지능정보연구
    • /
    • 제9권1호
    • /
    • pp.139-155
    • /
    • 2003
  • 본 논문은 결합된 의사결정 나무(C4.5)와 신경망기법을 적용함으로써 고객의 신용에 대한 예측을 높이기 위하여 이동통신 고객의 패턴을 분류하고, 분석하는 새로운 방법에 대하여 연구하였다. 의사 결정나무(C4.5)를 형성하여 선택된 결정변수와 함께 규칙을 생성함으로써, 신경망의 입력벡터 값을 정의하는 체계적인 방법을 제시하였다. 고객 관리측면에서 본 논문은 이동 통신 회사의 기존고객을 분류하여 패턴을 분석함으로써 우수한 고객의 지속적인 관리와 이탈 가능성이 많은 고객을 차별 관리하여 기업이익을 증대시킬 수 있을 것이다. 또한 이러한 분류를 통하여 신규 고객에 반영함으로써 고객의 향후 관리에도 기여할 수 있을 것이다. 실제 이동통신 고객데이터를 중심으로 연구의 결과는 예측의 정확도가 기존의 의사결정 트리 모델 (CART, C4.5), 회귀모형, 신경망 접근 방법과 기존에 연구되었던 결합모델(CART & 신경망)보다 훨씬 높게 연구되었다.

  • PDF

대학생의 재정에 대한 지식과 가치관에 관한 연구: 지식과 가치관에 따른 유형분류 및 재정적 특성분석 (A Study on Financial Knowledge and Values of College Students: Classification and Analysis according to the Knowledge and the Values)

  • 홍은실
    • 가정과삶의질연구
    • /
    • 제25권3호
    • /
    • pp.89-106
    • /
    • 2007
  • This paper diagnoses the financial knowledge of the college students and their values on financial situation. Another emphasis is given to the classification of surveyed college students based on their financial knowledge and values and the financial traits of each classified group is also analyzed. Statistical analysis was conducted using Cronbach's ${\partial}$, factor analysis, t-test, one-way ANOVA, and Duncan's multiple range test with total number of 733 questionnaires. Primary results of the research are as follows: First, overall score of financial knowledge was 62.65 points, showing the highest points in spending while lowest in savings and investment. Senior classes, students majoring in liberal arts, students with financial education and media experiences scored high points. Second, overall score of college students on financial values was 3.92, resulting in high points on credit and frugality but points on sharing with others were low. Thirdly, all surveyed students were classified into 4 types based on the mean scores on financial knowledges and values. Total 31.7% of students belonged to Type 1 where students scored high points on financial knowledge and values. Type 2 had about 22.4 % of students whose financial score was high but value score was low. Type 3 occupied 24.2% and this group scored low points on financial knowledge but high points on financial values. Type 4 occupied 21.8% and was a group of students whose scores for financial knowledge and values were low. Finally, Type 1 and 3 groups showed better desirable behaviors for financial management and expressed higher satisfaction status for finance than Type 2 and 4. Type 1 is a group of students whose subjective financial level was high. Monthly income was highest in Type 2 and financial stress was lowest in Type 1.

그룹변수를 포함하는 불균형 자료의 분류분석을 위한 서포트 벡터 머신 (Hierarchically penalized support vector machine for the classication of imbalanced data with grouped variables)

  • 김은경;전명식;방성완
    • 응용통계연구
    • /
    • 제29권5호
    • /
    • pp.961-975
    • /
    • 2016
  • H-SVM은 입력변수들이 그룹화 되어 있는 경우 분류함수의 추정에서 그룹 및 그룹 내의 변수선택을 동시에 할 수 있는 방법론이다. 그러나 H-SVM은 입력변수들의 중요도에 상관없이 모든 변수들을 동일하게 축소 추정하기 때문에 추정의 효율성이 감소될 수 있다. 또한, 집단별 개체수가 상이한 불균형 자료의 분류분석에서는 분류함수가 편향되어 추정되므로 소수집단의 예측력이 하락할 수 있다. 이러한 문제점들을 보완하기 위해 본 논문에서는 적응적 조율모수를 사용하여 변수선택의 성능을 개선하고 집단별 오분류 비용을 차등적으로 부여하는 WAH-SVM을 제안하였다. 또한, 모의실험과 실제자료 분석을 통하여 제안한 모형과 기존 방법론들의 성능 비교하였으며, 제안한 모형의 유용성과 활용 가능성 확인하였다.

유전자 알고리즘 기반의 기업부실예측 통합모형 (Integrated Corporate Bankruptcy Prediction Model Using Genetic Algorithms)

  • 옥중경;김경재
    • 지능정보연구
    • /
    • 제15권4호
    • /
    • pp.99-121
    • /
    • 2009
  • 최근 데이터마이닝 기법을 이용하여 기업의 부실을 예측하고자 하는 연구가 많이 이루어져 왔다. 여러 연구자들에 의해 다양한 데이터마이닝 기법이 연구되었으나 각 방법론이 장단점을 가지고 있기에 이를 보완적으로 사용하고자하는 결합기법에 대한 연구도 꾸준하게 발표되고 있다. 본 연구에서는 데이터마이닝 기법을 각 기법의 특성을 바탕으로 4가지 형태로 구분하고 각 형태의 대표적인 기법을 선택하여 이를 유전자알고리즘을 통하여 통합하는 기법을 제안한다. 유전자알고리즘은 전역최적화기법으로 다양한 기법의 결과를 유기적으로 통합하여 최적해 또는 유사최적해를 찾게 해 줄 것이다. 본 연구에서는 기업부실예측에서 유용한 모형을 찾기 위하여 단일모형, 기존의 통합모형과 본 연구에서 제안하는 유전자알고리즘 통합기법의 결과를 비교한다.

  • PDF

Intelligent On-demand Routing Protocol for Ad Hoc Network

  • Ye, Yongfei;Sun, Xinghua;Liu, Minghe;Mi, Jing;Yan, Ting;Ding, Lihua
    • Journal of Information Processing Systems
    • /
    • 제16권5호
    • /
    • pp.1113-1128
    • /
    • 2020
  • Ad hoc networks play an important role in mobile communications, and the performance of nodes has a significant impact on the choice of communication links. To ensure efficient and secure data forwarding and delivery, an intelligent routing protocol (IAODV) based on learning method is constructed. Five attributes of node energy, rate, credit value, computing power and transmission distance are taken as the basis of segmentation. By learning the selected samples and calculating the information gain of each attribute, the decision tree of routing node is constructed, and the rules of routing node selection are determined. IAODV algorithm realizes the adaptive evaluation and classification of network nodes, so as to determine the optimal transmission path from the source node to the destination node. The simulation results verify the feasibility, effectiveness and security of IAODV.

내부통제 취약기업 예측과 특성에 관한 연구 - 상장기업군과 비상장기업군 중심으로 - (A Study about Internal Control Deficient Company Forecasting and Characteristics - Based on listed and unlisted companies -)

  • 유길현;김대룡
    • 디지털융복합연구
    • /
    • 제15권2호
    • /
    • pp.121-133
    • /
    • 2017
  • 본 연구는 취약한 내부통제시스템을 형성하고 있을 가능성이 높은 기업들을 예측하는 적합한 모형을 형성하고, 이를 기반으로 취약기업의 특성을 살펴보고자 했다. 분석에 사용된 자료는 K_금융기관과 대출거래가 이루어졌던 상장법인과 비상장법인을 대상으로 하였다. 주요 결과로, 금융기관이 내부통제가 취약한 기업을 예측하기 위해서는 로짓모형에 비해 판별모형이 적합하다는 결론에 도달했다. 판별모형이 내부통제 취약기업을 취약기업으로 예측하는 정확도가 높고, 취약기업을 정상기업으로 잘못분류 할 오류가 낮았기 때문이다. 내부통제가 취약한 기업의 주요특성은 낮은 신용도, 낮은 자산건전성, 높은 연체율, 낮은 영업활동현금흐름, 높은 부채비율, 그리고 부(-)의 매출액영업이익률을 형성하는 기업으로 나타났다. 본 내부통제 취약예측모형을 포함한 연구결과는 자료구성의 한계로 연구가 이루어지지 않았던 비상장기업군까지 확장하였기에, 금융기관이 내부통제 취약가능성이 높은 기업을 사전적으로 예측하여 자산손실을 예방하는 도구로 이용할 수 있을 것이다.

혼합분포에서 최적분류점 (Optimal Thresholds from Mixture Distributions)

  • 홍종선;주재선;최진수
    • 응용통계연구
    • /
    • 제23권1호
    • /
    • pp.13-28
    • /
    • 2010
  • 혼합분포를 가정한 신용평가연구에서 부도차주를 정상으로 예측하거나 정상차주를 부도로 예측하는 오류를 최소화하는 분류점을 추정하는 방법을 토론한다. 확률변수 스코어와 정상과 부도상태의 모수공간으로 정의된 확률밀도함수들에 대하여 강력검정과 일반화가능도비검정을 이용하여 최적분류점의 추정방법을 제안하고, ROC와 CAP 곡선에서 분류정확도를 측정하는 정확도(accuarcy)와 진실율(true rate)을 이용하여 이 측도를 최대로 하는 최적분류점을 확률밀도함수의 관계식으로 추정하는 방법을 제안한다. 다양한 정규분포에서 가설검정, 정확도 그러고 진실율을 이용하는 세가지 방법의 최적분류점을 구하고 각최적분류점에 대응하는 제 I 종과 제 II 종 오류합의 크기를 비교하여 효율성을 토론한다.

지역사회간호학 실습교육 현황 분석 (Analysis of Current Status of the Community Health Nursing Practice Education)

  • 조유향;도은영;강경숙;김영미;김윤경;류화라;이정미;최인희;최희정
    • 지역사회간호학회지
    • /
    • 제28권3호
    • /
    • pp.347-356
    • /
    • 2017
  • Purpose: The purpose of this study was to provide basic evidence to improve community health nursing practice education by analyzing the current status of actual operation, program outcomes and evaluation methods, and the level of achieving learning goals. Methods: Data were collected through an e-mail survey from 155 professors teaching community health nursing in April 2016. Out of 45 responses in total, 42 cases were used for analysis (response rate 29.0%). Results: Community health nursing practice was a 3-credit course in most of the schools (66.7%) and included a practice at public health centers without exception. The most common diagnosis classification system was OMAHA (81.0%). The core fundamental nursing skills evaluated during the practice were subcutaneous injection, vital signs, oral administration, and intradermal injection. Among the subjects of community health nursing practice, the area with the highest potential for achieving learning goals was primary health care provision (4.4/5) and the area with the lowest potential was disaster management (2.4/5). Conclusion: The results of this study show that there would be active efforts to complement and improve several problems of the community health nursing practice among the community health nursing practice instructors for more effective and qualitative community health nursing practice.