인터넷 불법금융광고는 인터넷 카페, 블로그 등을 통해 통장매매, 신용카드·휴대폰결제현금화 및 개인신용정보매매 등 불법금융행위를 목적으로 한다. 금융감독당국의 노력에도 불구하고 불법금융행위는 줄어들지 않고 있다. 본 연구는 인터넷 불법금융광고 게시글에 파이썬 딥러닝 기반 텍스트 분류기법을 적용해 불법여부를 탐지하는 모델을 제안한다. 텍스트 분류기법으로 주로 사용되는 합성곱 신경망(CNN: Convolutional Neural Network), 순환 신경망(RNN: Recurrent Neural Network), 장단기 메모리(LSTM: Long-Short Term Memory) 및 게이트 순환 유닛(GRU: Gated Recurrent Unit)을 활용한다. 그동안 수작업으로 심사한 불법확인 결과를 기초 데이터로 이용한다. 한국어 자연어처리와 딥러닝 모델의 하이퍼파라미터 조절을 통해 최적의 성능을 보이는 모델을 완성하였다. 본 연구는 그동안 이뤄지지 않았던 인터넷 불법금융광고 판별을 위한 딥러닝 모델을 제시하였다는데 큰 의미가 있다. 또한 딥러닝 모델에서 91.3~93.4% 수준의 정확도를 보임으로써 불법금융광고 탐지에 딥러닝 모델을 실제 적용하여 불법금융광고 근절에 기여할 수 있기를 기대해 본다.
본 연구는 기술력 평가항목 중 기업의 재무안정성과 관련된 항목을 신용평가모형에 반영하여 중소기업뿐만이 아닌 전체 기업을 대상으로 한 신용평가모형의 부도변별력을 높이기 위한 기술력 평가모형의 신용평가모형 내 내재화에 착안하여 시작되었다. 따라서 기술력 평가모형이 부채비율 기준의 고안정성 중소기업을 사전에 판별하는 데 적용될 수 있는지 검증하는 것을 목표로 한다. 대상 기업을 업종(제조업 vs. 비(非)제조업)과 업력(창업기업 vs. 비(非)창업기업)으로 구분하고, 3개년 동안 해당 군집의 평균 부채비율 1/2 이하를 달성한 기업에 대해 고안정성 중소기업으로 정의한 후, C5.0 기법을 적용하여 모형의 판별력을 검증하였다. 분석결과 소항목 수준에서는 업종과 업력에 따라 중요도 간 차이가 있지만, 중항목 수준에서는 기술개발역량이 고안정성 중소기업을 판별하는 중요변수로 도출되었으며, 기업의 업력에 따라 창업 초기에는 자금조달능력(수익창출능력을 고려한 자본구조, 자본비용 및 자금조달 방법의 다양성)이 미래 고안정성 중소기업 여부를 결정하는 중요변수이지만, 업력이 증가함에 따라 지속적인 성과를 가능하게 하는 기술개발 인프라가 재무안정성에 영향을 미치는 중요 변수로 변화한다는 결론을 도출하였다. 업종과 업력에 따른 모형의 분류 정확도는 71~91% 수준이며, 기술력 평가항목을 이용하여 고안정성 중소기업을 판별할 수 있다는 가능성을 확인하였다.
본 논문은 결합된 의사결정 나무(C4.5)와 신경망기법을 적용함으로써 고객의 신용에 대한 예측을 높이기 위하여 이동통신 고객의 패턴을 분류하고, 분석하는 새로운 방법에 대하여 연구하였다. 의사 결정나무(C4.5)를 형성하여 선택된 결정변수와 함께 규칙을 생성함으로써, 신경망의 입력벡터 값을 정의하는 체계적인 방법을 제시하였다. 고객 관리측면에서 본 논문은 이동 통신 회사의 기존고객을 분류하여 패턴을 분석함으로써 우수한 고객의 지속적인 관리와 이탈 가능성이 많은 고객을 차별 관리하여 기업이익을 증대시킬 수 있을 것이다. 또한 이러한 분류를 통하여 신규 고객에 반영함으로써 고객의 향후 관리에도 기여할 수 있을 것이다. 실제 이동통신 고객데이터를 중심으로 연구의 결과는 예측의 정확도가 기존의 의사결정 트리 모델 (CART, C4.5), 회귀모형, 신경망 접근 방법과 기존에 연구되었던 결합모델(CART & 신경망)보다 훨씬 높게 연구되었다.
This paper diagnoses the financial knowledge of the college students and their values on financial situation. Another emphasis is given to the classification of surveyed college students based on their financial knowledge and values and the financial traits of each classified group is also analyzed. Statistical analysis was conducted using Cronbach's ${\partial}$, factor analysis, t-test, one-way ANOVA, and Duncan's multiple range test with total number of 733 questionnaires. Primary results of the research are as follows: First, overall score of financial knowledge was 62.65 points, showing the highest points in spending while lowest in savings and investment. Senior classes, students majoring in liberal arts, students with financial education and media experiences scored high points. Second, overall score of college students on financial values was 3.92, resulting in high points on credit and frugality but points on sharing with others were low. Thirdly, all surveyed students were classified into 4 types based on the mean scores on financial knowledges and values. Total 31.7% of students belonged to Type 1 where students scored high points on financial knowledge and values. Type 2 had about 22.4 % of students whose financial score was high but value score was low. Type 3 occupied 24.2% and this group scored low points on financial knowledge but high points on financial values. Type 4 occupied 21.8% and was a group of students whose scores for financial knowledge and values were low. Finally, Type 1 and 3 groups showed better desirable behaviors for financial management and expressed higher satisfaction status for finance than Type 2 and 4. Type 1 is a group of students whose subjective financial level was high. Monthly income was highest in Type 2 and financial stress was lowest in Type 1.
H-SVM은 입력변수들이 그룹화 되어 있는 경우 분류함수의 추정에서 그룹 및 그룹 내의 변수선택을 동시에 할 수 있는 방법론이다. 그러나 H-SVM은 입력변수들의 중요도에 상관없이 모든 변수들을 동일하게 축소 추정하기 때문에 추정의 효율성이 감소될 수 있다. 또한, 집단별 개체수가 상이한 불균형 자료의 분류분석에서는 분류함수가 편향되어 추정되므로 소수집단의 예측력이 하락할 수 있다. 이러한 문제점들을 보완하기 위해 본 논문에서는 적응적 조율모수를 사용하여 변수선택의 성능을 개선하고 집단별 오분류 비용을 차등적으로 부여하는 WAH-SVM을 제안하였다. 또한, 모의실험과 실제자료 분석을 통하여 제안한 모형과 기존 방법론들의 성능 비교하였으며, 제안한 모형의 유용성과 활용 가능성 확인하였다.
최근 데이터마이닝 기법을 이용하여 기업의 부실을 예측하고자 하는 연구가 많이 이루어져 왔다. 여러 연구자들에 의해 다양한 데이터마이닝 기법이 연구되었으나 각 방법론이 장단점을 가지고 있기에 이를 보완적으로 사용하고자하는 결합기법에 대한 연구도 꾸준하게 발표되고 있다. 본 연구에서는 데이터마이닝 기법을 각 기법의 특성을 바탕으로 4가지 형태로 구분하고 각 형태의 대표적인 기법을 선택하여 이를 유전자알고리즘을 통하여 통합하는 기법을 제안한다. 유전자알고리즘은 전역최적화기법으로 다양한 기법의 결과를 유기적으로 통합하여 최적해 또는 유사최적해를 찾게 해 줄 것이다. 본 연구에서는 기업부실예측에서 유용한 모형을 찾기 위하여 단일모형, 기존의 통합모형과 본 연구에서 제안하는 유전자알고리즘 통합기법의 결과를 비교한다.
Ye, Yongfei;Sun, Xinghua;Liu, Minghe;Mi, Jing;Yan, Ting;Ding, Lihua
Journal of Information Processing Systems
/
제16권5호
/
pp.1113-1128
/
2020
Ad hoc networks play an important role in mobile communications, and the performance of nodes has a significant impact on the choice of communication links. To ensure efficient and secure data forwarding and delivery, an intelligent routing protocol (IAODV) based on learning method is constructed. Five attributes of node energy, rate, credit value, computing power and transmission distance are taken as the basis of segmentation. By learning the selected samples and calculating the information gain of each attribute, the decision tree of routing node is constructed, and the rules of routing node selection are determined. IAODV algorithm realizes the adaptive evaluation and classification of network nodes, so as to determine the optimal transmission path from the source node to the destination node. The simulation results verify the feasibility, effectiveness and security of IAODV.
본 연구는 취약한 내부통제시스템을 형성하고 있을 가능성이 높은 기업들을 예측하는 적합한 모형을 형성하고, 이를 기반으로 취약기업의 특성을 살펴보고자 했다. 분석에 사용된 자료는 K_금융기관과 대출거래가 이루어졌던 상장법인과 비상장법인을 대상으로 하였다. 주요 결과로, 금융기관이 내부통제가 취약한 기업을 예측하기 위해서는 로짓모형에 비해 판별모형이 적합하다는 결론에 도달했다. 판별모형이 내부통제 취약기업을 취약기업으로 예측하는 정확도가 높고, 취약기업을 정상기업으로 잘못분류 할 오류가 낮았기 때문이다. 내부통제가 취약한 기업의 주요특성은 낮은 신용도, 낮은 자산건전성, 높은 연체율, 낮은 영업활동현금흐름, 높은 부채비율, 그리고 부(-)의 매출액영업이익률을 형성하는 기업으로 나타났다. 본 내부통제 취약예측모형을 포함한 연구결과는 자료구성의 한계로 연구가 이루어지지 않았던 비상장기업군까지 확장하였기에, 금융기관이 내부통제 취약가능성이 높은 기업을 사전적으로 예측하여 자산손실을 예방하는 도구로 이용할 수 있을 것이다.
혼합분포를 가정한 신용평가연구에서 부도차주를 정상으로 예측하거나 정상차주를 부도로 예측하는 오류를 최소화하는 분류점을 추정하는 방법을 토론한다. 확률변수 스코어와 정상과 부도상태의 모수공간으로 정의된 확률밀도함수들에 대하여 강력검정과 일반화가능도비검정을 이용하여 최적분류점의 추정방법을 제안하고, ROC와 CAP 곡선에서 분류정확도를 측정하는 정확도(accuarcy)와 진실율(true rate)을 이용하여 이 측도를 최대로 하는 최적분류점을 확률밀도함수의 관계식으로 추정하는 방법을 제안한다. 다양한 정규분포에서 가설검정, 정확도 그러고 진실율을 이용하는 세가지 방법의 최적분류점을 구하고 각최적분류점에 대응하는 제 I 종과 제 II 종 오류합의 크기를 비교하여 효율성을 토론한다.
Purpose: The purpose of this study was to provide basic evidence to improve community health nursing practice education by analyzing the current status of actual operation, program outcomes and evaluation methods, and the level of achieving learning goals. Methods: Data were collected through an e-mail survey from 155 professors teaching community health nursing in April 2016. Out of 45 responses in total, 42 cases were used for analysis (response rate 29.0%). Results: Community health nursing practice was a 3-credit course in most of the schools (66.7%) and included a practice at public health centers without exception. The most common diagnosis classification system was OMAHA (81.0%). The core fundamental nursing skills evaluated during the practice were subcutaneous injection, vital signs, oral administration, and intradermal injection. Among the subjects of community health nursing practice, the area with the highest potential for achieving learning goals was primary health care provision (4.4/5) and the area with the lowest potential was disaster management (2.4/5). Conclusion: The results of this study show that there would be active efforts to complement and improve several problems of the community health nursing practice among the community health nursing practice instructors for more effective and qualitative community health nursing practice.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.