• Title/Summary/Keyword: Crashworthy Design

Search Result 42, Processing Time 0.025 seconds

Collision Analysis of the Full Rake TGV-K on Crashworthiness (TGV-K 전체 차량의 충돌안전도 해석 연구)

  • Koo, Jeong-Seo;Song, Dahl-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.1 no.1 s.1
    • /
    • pp.1-9
    • /
    • 1998
  • Described in this paper is the result of a study on collision analysis of TGV-K using 1-dimensional model for crashworthy design. Crashworthy design of the front end is very important because majority of the impact energy (more than 70%) is absorbed by the crush of the front end when the train is collided with an obstacle like a tank lorry. Guideline for the crashworthy design can be described from the collision analysis of the whole train using a 1-dimensional model. Since the headstock of TGV-K is not designed in a crashworthy point of view, a conceptual design of the headstock to improve crashworthiness is suggested and evaluated using 1-dimensional collision analysis. The suggested design, which adopts an energy absorber and a crashworthy headstock, shows a good behaviour on the accident scenario of SNCF (collision at 110 km/h against a movable rigid mass of 15 ton).

  • PDF

Collision Analysis of Full Rake TGV-K for crashworthy design (고속전철 TGV-K 전체 차량에 대한 충돌안전도 해석 연구)

  • 구정서;송달호
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.361-368
    • /
    • 1998
  • Described in this paper is the result of a study on collision analysis of TGV-K using 1-dimensional model for crashworthy design. Crashworthy design of the front end is very important because majority of the impact energy (more than 70%) is absorbed by the crush of the front end when the train is collided with an obstacle like a tank lorry. Guideline for the crashworthy design can be described from the collision analysis of the whole train using a 1-dimensional model. Since the headstock of TGV-K is not designed in a crashworthy point of view, a conceptual design of the headstock to improve crashworthiness is suggested and evaluated using 1-dimensional collision analysis. The suggested design, which adopts an energy absorber and a crashworthy headstock, shows a good behaviour on the accident scenario of SNCF (collision at 110 km/hr against a movable rigid mass of 15 ton).

  • PDF

A Study on Full-rake Crashworthy Design of Tilting Train Express (TTX 전체차량 충돌안전도 설계방안에 관한 연구)

  • Jung Hyun-Seung;Kwon Tae-Soo;Koo Jeong-Seo
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.646-651
    • /
    • 2004
  • Crashworthy design of a train is a systematic approach to ensure the safety of passengers and crews in railway transportation for the prescribed accident scenarios. This approach needs new structural arrangements and designs to absorb higher levels of impact energy in a controlled manner and interior designs to minimize passenger injuries. In this paper, crashworthy design approach is applied to the tilting train express (TIX) design which is newly being developed. Based on a head-on collision and a level crossing collision scenarios, the crash behaviors of a TTX design candidate arc evaluated numerically using the finite element method. Finally, design alternatives which show better crashworthy performances are proposed and verified through the full-rake collision simulations.

  • PDF

A Study on Crashworthy Design for the Power-car of KHST (한국형 고속전철 동력차의 충돌안전도 설계에 관한 연구)

  • 노규석;구정서;송달호;김동성
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.519-525
    • /
    • 1999
  • This paper describes a crashworthy design for the front structure of KHST (Korean High Speed Train) under the SNCF accident scenario (collision against a movable rigid mass of IS tons at 110 km/h). The front structure designed in a new concept shows good behaviours in crashworthy point of view. It collapses in a progressive and well-controlled fashion. To evaluate the design by considering real situations, the power-car is simulated for accidents collided against a dump truck of 15 tons at 110 km/h. The front end structure of it shows a good response on crashworthiness.

  • PDF

A Study on Crashworthiness for the Front Structure of TGV (고속전철 TGV-K 전두부의 충돌안전도에 관한 연구)

  • 노규석;김유일;구정서;송달호
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.369-376
    • /
    • 1998
  • For a good crashworthy design of train vehicles, it is essential to develop some design and analysis techniques for energy absorbing structures. This paper analyzes the front structure of TGV-K and suggests crashworthy design of Korea high speed tram(KHST) using the accident scenario of SNCF(collision with a stationary rigid mass in motion of 15 ton at 110km/h). Specifically this research is concentrated on developing a well-designed protective headstocks using mullticell structures wi th cutouts to improve crashworthiness of KHST

  • PDF

Crashworthiness on the full rake of KHST (한국형 고속전철의 충돌안전도 설계 분석)

  • 구정서;박성하;윤영한;김동성
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.526-533
    • /
    • 1999
  • Tn this study, the crashworthy design of the full rake of KHST (Korean High Speed Train under development in G7-project) is numerically evaluated using 2-dimensional crash dynamics. The results of KHST are compared with those of TGV-K (TGV for Seoul-Pusan line). KHST shows better crashworthy behaviors after impact. Specifically, impact forces, decelerations and overriding displacements are much reduced in KHST All the design guidelines under SNCF accident scenario (collision against a movable rigid mass of 15 ton at 110 km/h) are satisfied in KHST.

  • PDF

A Study on the Systematic Crashworthiness Design Concept (체계적인 헬리콥터 내추락성 설계개념 연구)

  • Hwang, Jungsun;Jung, Jae-Kwon;Hyun, Young-O
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.2
    • /
    • pp.35-41
    • /
    • 2013
  • Crashworthiness design concept in the helicopter development is still under evolutionary stage. Survivability in the event of a crash was remarkably improved and this fact can be recognized by the analysis results on the AH-64 Apache and UH-60 Black Hawk crash accidents. Those two models are the first ones in which the crashworthiness design concept was applied with a full-scale requirement. Here we need to notice that under-design of the system results in unexpected injuries and deaths while over-design of the crashworthy elements result in unnecessary weight and costs. If landing gear system would be verified to have enough energy absorption capability in the specified vertical velocity interval, then design requirements of the airframe, fuel system and seats could be modified positively. In this paper, the right and systematic crashworthiness design concept is reviewed on the assumption that design requirements of some crashworthy elements could be partially tailored.

Crashworthy Design and Test of Landing Gear (착륙장치 내추락 설계 및 시험평가)

  • Kim, Tae-Uk;Lee, Sang-Wook;Shin, Jeong-Woo;Lee, Seung-Kyu;Kim, Sung-Chan;Hwang, In-Hee;Jo, Jeong-Jun;Lee, Je-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.7
    • /
    • pp.601-607
    • /
    • 2012
  • The main function of a landing gear is to absorb the impact energy during touchdown. It it occasionally required for landing gear to have crashworthiness for improving survivability and safety in case of emergency landing. This paper introduces the design concept, performance analysis and drop test procedures for the development of the crashworthy landing gear. The shock absorbing ability and the crash behavior are proved by analyzing various sensor data and video clips from high speed camera recording during drop tests.

CRASHWORTHY DESIGN AND EVALUATION ON THE FRONT-END STRUCTURE OF KOREAN HIGH SPEED TRAIN

  • Koo, J.S.;Youn, Y.H.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.173-180
    • /
    • 2004
  • An intensive study was conducted for the crash worthy structural design of the recently developed Korean High Speed Train (KHST). Two main design concepts were set up to protect both crews and passengers from serious injury in heavy collision accidents, and to reduce damage to the train itself in light collision accidents. A collision against a movable 15-ton rigid obstacle at 110 kph was selected from train accident investigations as the accident scenario for the heavy collisions. A train-to-train collision at the relative velocity of 16 kph was used for the light collision. The crashworthiness behaviors of KHST were numerically evaluated using FEM. Analysis results using 1-D collision dynamics model of the full rake consist and 3-D shell element model of the front end structure showed good crashworthy responses in a viewpoint of structural design. Occupant analyses and sled tests demonstrated that KHST performed well enough to protect occupants under the considered accident scenarios. Finally our numerical approaches were evaluated by a real scale collision test.

Study on the Crashworthiness Analysis and Evaluation of the High-Speed EMU (동력분산형 고속전철의 충돌안전도 해석 및 평가기술 연구)

  • Koo, Jeong-Seo;Kim, Geo-Young;Cho, Hyun-Jik
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1213-1220
    • /
    • 2008
  • In this study, the crashworthy design guidelines for the high speed EMU were derived and numerically evaluated. As for this high speed train, there are several different features from the KTX in that the conventional type bogies are adopted and the front end car (TC car) accommodates passengers. It is natural that the impact acceleration of the front end car should be controlled under the appropriate level stipulated at safety regulations for collision accidents. Also, car-to-car interfacing structures and devices should be deliberately designed to prevent overriding and telescoping mechanisms. As the first step for these design countermeasures, it was studied that how much impact energy should be absorbed at the energy absorbing zones and devices of each carbody to satisfy the impact acceleration regulations of the safety regulations. These results will be used as the crashworthy design guidelines for the high speed train in the next year research.

  • PDF