• Title/Summary/Keyword: Crane systems

Search Result 245, Processing Time 0.05 seconds

Development of Display Content for Overload Prevention in the Crane Controller (크레인 컨트롤러에서의 전도방지를 위한 디스플레이 콘텐츠 개발)

  • Lee, Sang Young
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.3
    • /
    • pp.87-95
    • /
    • 2012
  • Up to now, industrial cranes play important roles as the effective machines to carry heavy loads in the manufacturing premise, in the construction field and so on. And, a crane is widely used not only to daily work but also to carry heavy materials efficiently in a construction site for prevention of accident. However, the crane operation is highly complicated even for experts. In this paper, we developed the content of the crane mounted on the controller. This content overload conditions in the operating environment for the crane operator to warn, and the operation of equipment has the capability to limit automatically. The content for crane controller is to alert the operator overload and to limit the operation of equipment for stabilizing capabilities. The content of the flexible algorithm is based on stabilizing controllers, PLC (Programmable Logic Controller) to connect for using the equipment and electrical control systems to ensure the safety of workers and to improve the ability to work possible.

Anti-Sway Control System Design for the Container Crane

  • An, Sang-Back;Kim, Young-Bok;Kang, Gi-Bong;Zhai, Guisheng
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1404-1409
    • /
    • 2003
  • The sway control problem of the pendulum motion of the container crane hanging on the trolley, which transports containers from the container ship to the truck, is considered in this paper. In the container crane control problem, the main issue is to suppress the residual swing motion of the container at the end of the acceleration, deceleration or the case of that the unexpected disturbance input exists. For this problem, in general, the trolley motion control strategy is introduced and applied to real plants. In this paper, we suggest a new type of swing motion control system for a crane system in which a small auxiliary mass is installed on the spreader. The actuator reacting against the auxiliary mass applies inertial control forces to the spreader of the container crane to reduce the swing motion in the desired manner. In this paper, we consider that the length of the rope varies is we design the anti-sway control system based on LMI(linear matrix inequality) approach. And, it will be shown that the proposed control strategy is useful and it can be easily applicable to the real world. So, in this study, we investigate usefulness of the proposed anti-sway system and evaluate system performance from simulation and experimental studies.

  • PDF

Control of Nonlinear Crane Systems with Perturbation using Model Matching Approach (모델매칭 기법을 이용한 시스템 섭동을 갖는 비선형 크레인시스템 제어)

  • Cho, Hyun-Cheol;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • Journal of Navigation and Port Research
    • /
    • v.31 no.6
    • /
    • pp.523-530
    • /
    • 2007
  • Crane systems are very important in industrial fields to carry heavy objects such that many investigations about control of the systems are actively conducted for enhancing its control performance. This paper presents an adaptive control approach using the model matching for a complex 3-DOF nonlinear crane system. First, the system model is linearized through feedback linearization method and then PD control is applied in the approximated model. This linear model is considered as nominal to derive corrective control law for a perturbed crane model using Lyapunov theory. This corrective control is primitively aimed to compensate real-time control deviation due to partially known perturbation. We additionally study stability analysis of the crane control system using Lyapunov perturbation theory. Evaluation of our control approach is numerically carried out through computer simulation and its superiority is demonstrated comparing with the classical control.

A Development ATCS for Automating th e Stacking Crane

  • Choi, Sung-Uk;Lee, C.H.;Kim, Jung-Ho;Lee, J.W.;Lee, Young-Jin;Lee, Kwon-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.131.6-131
    • /
    • 2001
  • During the operation of crane system in container yard, it is necessary to control the crane trolley position and loop length so that the swing of the hanging container is minimized. Recently an automatic control system with high speed and rapid transportation is required. Therefore, we designed a controller to control the stacking crane system.

  • PDF

A study on the swing control using anti-swing orane (무진동 크레인을 이용한 흔들림 제어에 관한 연구)

  • 박병석;윤지섭;이재설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.292-297
    • /
    • 1990
  • An anti-swing controller for an overhead crane in the stop position is designed. The developed anti-swing controller improves on the poor damping characteristics of overhead crane by feeding back the crane acceleration as a function of swing angular speed. The experimental results show that this crane using the proposed controller yields small stop position error and rapid damping response characteristics.

  • PDF

Metaheuristics of the Rail Crane Scheduling Problem (철송 크레인 일정계획 문제에 대한 메타 휴리스틱)

  • Kim, Kwang-Tae;Kim, Kyung-Min
    • IE interfaces
    • /
    • v.24 no.4
    • /
    • pp.281-294
    • /
    • 2011
  • This paper considers the rail crane scheduling problem which is defined as determining the sequence of loading/unloading container on/from a freight train. The objective is to minimize the weighted sum of the range of order completion time and makespan. The range of order completion time implies the difference between the maximum of completion time and minimum of start time of each customer order consisting of jobs. Makespan refers to the time when all the jobs are completed. In a rail freight terminal, logistics firms as a customer wish to reduce the range of their order completion time. To develop a methodology for the crane scheduling, we formulate the problem as a mixed integer program and develop three metaheuristics, namely, genetic algorithm, simulated annealing, and tabu search. To validate the effectiveness of heuristic algorithms, computational experiments are done based on a set of real life data. Results of the experiments show that heuristic algorithms give good solutions for small-size and large-size problems in terms of solution quality and computation time.

A Study of Anti-sway Control for a Ship-mounted Contrainer Crane (부유체 위에 고정된 크레인의 안정화 제어기 설계에 관한 연구)

  • Min, Hyung-Gi;Cho, Jae-Dong;Kim, Ji-Hoon;Kwon, Sung-Ha;Jeung, Eun-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.8
    • /
    • pp.727-734
    • /
    • 2010
  • This paper deals with an anti-sway control for a ship-mounted container crane which is disturbed by the wave-induced motions of the ship. We derive a simple dynamics of the ship-mounted container crane with an active anti-sway control system and transform it into a dynamic function for a horizontal variable on the absolute coordinate. Then we propose an control method to reduce pendulation of the spreader and compare its performance with well-known feedback linearization control in computer simulation.

A Feedback Control System for Suppressing Crane Oscillations with On-Off Motors

  • Hekman, Keith A.;Singhose, William E.
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.223-233
    • /
    • 2007
  • Crane payloads frequently swing with large amplitude motion that degrades safety and throughput. Open-loop methods have addressed this problem, but are not effective for disturbances. Closed-loop methods have also been used, but generally require the speed of the driving motors to be precisely controlled. This paper develops a feedback control method for controlling motors to cancel the measured payload oscillations by intelligently timing the ensuing on and off motor commands. The effectiveness of the oscillation suppression scheme is experimentally verified on an industrial bridge crane.

Command Shaping Control for Limiting the Transient Sway Angle of Crane Systems

  • Hong, Kyung-Tae;Huh, Chang-Do;Hong, Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.43-53
    • /
    • 2003
  • A modified command shaping control to reduce residual vibrations at a target position and to limit the sway angle of the payload during traveling for container crane systems is investigated. When the maneuvering time is minimized, a large transient amplitude and steady state oscillations may occur inherently. Since a large swing of the payload during the transfer is dangerous, the control objective is to transfer a payload to the desired place as quickly as possible while limiting the swing angle of the payload during the transfer. The conventional shapers have been enhanced by adding one more constraint to limit intermediate sway angles of the payload. The developed method is shown to be more effective than other conventional shapers for prevention of an excessive transient sway. Computer simulation results are provided.

An anti-swing control for 2 axis overhead cranes (2축 천정 크레인의 무진동 제어)

  • 이호훈;조성근;정연우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1428-1431
    • /
    • 1996
  • This paper proposes an anti-swing control law for a 2 degrees of freedom overhead crane. The dynamic model of a 2 degrees of freedom crane is highly nonlinear and coupled. The model is linearized and decoupled for each degree of freedom of the crane for small motions of the load about the vertical. Then a decoupled anti-swing control law is designed for each degree of freedom of the crane based on the linearized model. The control law consists of a position control loop and an swing angle control loop. The position loop,. is designed based on the loop shaping method and the swing angle loop is designed via the root locus method. Finally, the proposed anti-swing control law is implemented and evaluated on a 2 degrees of freedom prototype crane.

  • PDF