• Title/Summary/Keyword: Crack-Closure

Search Result 196, Processing Time 0.026 seconds

A Study on the Fatigue Crack Growth Behavior of A Ti-24Al-11Nb Alloy (Ti-24Al-11Nb 합금의 피로균열성장거동에 관한 연구)

  • Bae, Gyu-Sik;Lee, Mun-Hui
    • Korean Journal of Materials Research
    • /
    • v.2 no.5
    • /
    • pp.313-319
    • /
    • 1992
  • The mechanisms of fatigue crack growth (FCG) in a Ti$_3$Al-based (${\alpha}_2$) alloy, Ti-24Al-11Nb (a/o) with acicular microstructure were studied with particular attention focused on the fatigue crack path through the microstructure and on the effects of specimen orientation and crack closure. The results showed that the fatigue cracks of Ti-24Al-11Nb alloy grew much faster than conventional titanium alloys, with little difference in FCG rates for TL and TS orientations. The fatigue crack paths revealed crystallographic transgranular fracture with frequent serrations and branching. This is in agreement with the known effects of slip planarity and microstructure on the FCG behavior. The load-displacement hysteresis loops showed that the crack closure influenced the FCG behavior.

  • PDF

Damage constitutive model of brittle rock considering the compaction of crack

  • Gu, Qingheng;Ning, Jianguo;Tan, Yunliang;Liu, Xuesheng;Ma, Qing;Xu, Qiang
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1081-1089
    • /
    • 2018
  • The deformation and strength of brittle rocks are significantly influenced by the crack closure behavior. The relationship between the strength and deformation of rocks under uniaxial loading is the foundation for design and assessment of such scenarios. The concept of relative crack closure strain was proposed to describe the influence of the crack closure behavior on the deformation and strength of rocks. Considering the crack compaction effect, a new damage constitutive model was developed based on accumulated AE counts. First, a damage variable based on the accumulated AE counts was introduced, and the damage evolution equations for the four types of brittle rocks were then derived. Second, a compaction coefficient was proposed to describe the compaction degree and a correction factor was proposed to correct the error in the effective elastic modulus instead of the elastic modulus of the rock without new damage. Finally, the compaction coefficient and correction factor were used to modify the damage constitutive model obtained using the Lemaitre strain equivalence hypothesis. The fitted results of the models were then compared with the experimental data. The results showed that the uniaxial compressive strength and effective elastic modulus decrease with an increase in the relative crack closure strain. The values of the damage variables increase exponentially with strains. The modified damage constitutive equation can be used to more accurately describe the compressive deformation (particularly the compaction stage) of the four types of brittle rocks, with a coefficient of determination greater than 0.9.

A Study on the Energy Release Rate of Delaminated Composite Laminates (층간분리된 복합적층판의 에너지 방출률에 관한 연구)

  • Cheong, S.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.97-107
    • /
    • 1995
  • Global postbuckling analysis is accomplished for one-dimensional and two-dimensional delaminations. A new finite element model, which can be used to model the global postbuckling analysis of one-dimensional and two-dimensional delaminations, is presented. In order to calculate the strain energy release rate, geometrically nonlinear analysis is accomplished, and the incremental crack closure technique is introduced. To check the effectiveness of the finite element models and the incremental crack closure technique, the simplified closed-form sloution for a through-the-width delamination with plane strain condition is derived and compared with the finite element result. The finite element results show good agreement with the closed-foul1 solutions. The present method was extended to calculate the strain energy release rate for two-dimensional delamination. For a symmetric circular delamination, the strain energy release rate shows great variation along the delamination front. and the delamination growth appears to occur perpendicular to the loading direction.

  • PDF

Velocity-porosity relationships in oceanic basalt from eastern flank of the Juan de Fuca Ridge: The effect of crack closure on seismic velocity (Juan do Fuca 해저산맥의 동쪽 측면으로부터 얻은 해양성 현무암의 속도와 공극률의 관계: 균열닫힘이 탄성파 속도에 미치는 영향)

  • Tsuji, Takeshi;Iturrino, Gerardo J.
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.41-51
    • /
    • 2008
  • To construct in situ velocity-porosity relationships for oceanic basalt, considering crack features, P- and S-wave velocity measurements on basaltic samples obtained from the eastern flank of the Juan de Fuca Ridge were carried out under confining pressures up to 40 MPa. Assuming that the changes in velocities with confining pressures are originated by micro-crack closure, we estimated micro-crack aspect ratio spectra using the Kuster-$Toks{\ddot{o}}z$ theory. The result demonstrates that the normalised aspect ratio spectra of the different samples have similar characteristics. From the normalised aspect ratio spectrum, we then constructed theoretical velocity-porosity relationships by calculating an aspect ratio spectrum for each porosity. In addition, by considering micro-crack closure due to confining pressure, a velocity-porosity relationship as a function of confining pressure could be obtained. The theoretical relationships that take into account the aspect ratio spectra are consistent with the observed relationships for over 100 discrete samples measured at atmospheric pressure, and the commonly observed pressure dependent relationships for a wide porosity range. The agreement between the laboratory-derived data and theoretically estimated values demonstrates that the velocity-porosity relationships of the basaltic samples obtained from the eastern flank of the Juan de Fuca Ridge, and their pressure dependence, can be described by the crack features (i.e. normalised aspect ratio spectra) and crack closure.

Microstructurally Sensitive Fatigue Crack Propagation Behavior (微視組織에 敏感한 疲勞균열進展擧動)

  • 김정규;황돈영;박영조
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.316-325
    • /
    • 1986
  • Characteristics of fatigue crack propagation in martensite-ferrite duel phase steels have been investigated. In low .DELTA.K region, fatigue crack propagation resistance increases with increasing volume fraction of martensite, but the difference of crack propagation resistance resulted from the volume fraction decreases with increasing .DELTA.K. Also, threshold stress intensity factor range .DELTA.K$_{th}$ increases with increasing volume fraction of martensite, But fatigue crack propagation rates of dual-phase steels in terms of .DELTA.K$_{eff}$ are independent to volume fraction of martensite. These phenomena can be explained by the roughness induced crack closure due to crack deflection.n.n.

Effect of Specimen Thickness on Fatigue Crack Growth (피로균열진전에 미치는 시편 두께의 영향)

  • 김재훈;김영균;윤인수
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.79-86
    • /
    • 1998
  • The effect of specimen thickness on fatigue crack growth behavior has been carried out by compact tension specimens of thickness of 3mm, 10mm and 25mm for maraging steel and Al 7075-T6. The closure points were determined during the test by means of a clip-gage situated at the notch mouth. Specimen thickness have no apparent influence on the fatigue crack growth rate of maraging steel, but the crack growth rate of 25mm thickness specimen for Al 7075-T6 is faster than that of 3 and 10mm specimens. The difference of crack growth rates can be successfully explained by considering the different stress state of plane strain and plain stress due to the variation of specimen thickness. Also the crack opening ratio of 25mm specimen is greater than those of 3 and 10mm specimens. When a side groove is introduced in a 10mm specimen, the crack growth rate is approximately similar to that of 25mm specimen. The effective thickness expression of $B_e=B_o-(B_o-B_N)^2B_o$ is the most appropriate to evaluate the crack growth rate of side-grooved specimen. Fatigue crack growth rates can be well described by $\Delta K_{eff}$ of the crack closure points in regardless of all thickness and side-grooved specimens.

  • PDF

Fatigue Crack Growth Behavior of Steel for High Speed Rail Crossing (고속철도 분기기용 강의 피로균열 진전거동)

  • Choi, Seong-Dae;Nam, Jeoung-Hag;Lee, Jong-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.205-210
    • /
    • 2001
  • Fatigue crack growth tests were carried out using high manganese cast steel under constant amplitude loading. Average crystal grain sizes of the material are $200{\mu}m$ and $1000{\mu}m$. For this material, ${\Delta}K_{th}$ is about $8MPa{\sqrt{m}}$ which is quiet large as compared to the general structural steels and the crack growth rate is lower than the general structural steels especilly in the low ${\Delta}K$ regsion. The reason of this behavior is crack closure due to fracture surface roughness and fretting oxide. The relationship between da/dN and the ${\Delta}K_{eq}$ was represented by narrow band regardless of the stress ratio.

  • PDF

A Study on Fatigue Crack Propagation Behavior of Pressure Vessel Steel SA516/70 at High Temperature. (압력용기용 SA516/70 강의 고온피로균열 진전거동에 대한 연구)

  • 박경동;김정호;윤한기;박원조
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.147-153
    • /
    • 2000
  • The fatigue crack propagation behavior of the SA516/70 steel which is used for pressure vessels was examined experimentally at room temperature, $150^{\circ}C$, $250^{\circ}C$ and $370^{\circ}C$ with stress ratio of R=0.1 and 0.3. The fatigue crack propagation rate da/dN related with the stress intensity factor range $\Omega\textrm{K}$ was influenced by the stress ratio within the stable growth of fatigue crack(Region II) with an increase in $\Omega\textrm{K}$. The resistance to the fatigue crack growth at high temperature is higher in comparison with that at room temperature, and the resistance attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and high temperatures are mainly explained by the crack closure and oxide-induced by high temperature.

  • PDF

Fatigue Crack Growth Rate Equation by Crack Closure (균열닫힘현상을 고려한 피로균열전파식)

  • 김용수;강동명;신근하
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.4
    • /
    • pp.81-87
    • /
    • 1991
  • We propose the crack growth rate equation which will model fatigue crack growth rate behavior such that constant stress amplitude fatigue crack growth behavior can be predicted. Constant stress amplitude fatigue tests are conducted for four materials under three stress ratios of R=0.2, R=0.4 and R=0.6. Materials which have different mechanical properties i.e. stainless steel, low carbon steel, medium carbon steel and aluminum alloy are used. Through constant stress amplitude fatigue test by using unloading elastic compliance method, it is confirmed that crack closure is a close relationship with fatigue crack propagation. We describe simply fatigue crack propagation behavior as a function of the effective stress intensity factor range ($\Delta$ $K_{eff}$=U .$\Delta$K) for all three regions (threshold region, stable region). The fatigue crack growth rate equation is given by da / dN=A($\Delta$ $K_{eff}$­$\Delta$ $K_{o}$ )$^{m}$ / ($\Delta$ $K_{eff}$­$\Delta$K) Where, A and m are material constants, and $\Delta$ $K_{o}$ is stress intensity factor range at low $\Delta$K region. $K_{cf}$ is critical fatigue stress intensity factor.actor.

  • PDF

A Study on Fatigue Crack propagation Behavior of Pressure Vessel Steel SA516/70 at High Temperature (압력용기용 SA516/70 강의 고온피로균열 진전거동에 대한 연구)

  • 박경동;김정호;윤한기;박원조
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.105-110
    • /
    • 2001
  • The fatigue crack propagation behavior of the SA516/70 steel which is used for pressure vessels was examined experimentally at room temperature, 150$^{\circ}C $, 250$^{\circ}C $ and 370$^{\circ}C $ with stress ratio of R=0.1 and 0.3. The fatigue crack propagation rate da/dN related with the stress intensity factor range $\Delta K$ was influenced by the stress ratio within the stable growth of fatigue crack(Region II) with an increase in $\Delta K$. The resistance to the fatigue crack growth at high temperature is higher in comparison with that at room temperature, and the resistance attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and high temperature are mainly explained by the crack closure and oxide-induced by high temperature.

  • PDF