• 제목/요약/키워드: Crack propagation Stress intensity factor

검색결과 311건 처리시간 0.028초

세라믹/금속 접합재에 대한 정적강도의 파괴역학적 평가 (Evaluation of Static Strength Applying to Fracture Mechanics on Ceramic/Metal bonded Joint)

  • 김기성
    • 한국생산제조학회지
    • /
    • 제5권4호
    • /
    • pp.53-62
    • /
    • 1996
  • Recently, ceramic / metal bonded joints have led to inccreasing use of structural materials such as automobile, heat engine in various industries. In this paper, a method to analyze an interface crack under both residual stresses and applied loading was proposed. and some results of boundary element method(BEM) analysis Were presented, Fracture thoughness tests of ceramic/metals bonded joints with an interface crack Were carried out, and the stress intensity factors of these joints Ware analyzed by BEM. Also crack propagtion direction was simulated numerically by using BEM. Crack propagation angle was able to easily determine based on the maximum stress concept. The prediction of fracture strength by the fracture thoughness of the ceramics/metals bonded joints was proposed.

  • PDF

J파라미터를 이용한 고온피로균열전파 거동에 미치는 응력파형 영향의 연구 (A Study of the Effect of Stress Waveform on the Behavior of High Temp. Fatigue Crack Propagation Using J Parameters)

  • 허정원;박원조
    • 한국안전학회지
    • /
    • 제15권2호
    • /
    • pp.8-12
    • /
    • 2000
  • The fatigue crack propagation tests were performed in triangular and holding-time stress waveforms at $650^{\circ}C$. The behavior of fatigue crack propagation was investigated according to waveform. The analysis of high temperature fatigue crack propagation by the stress intensity factor range ${\Delta}K$, elastic fracture mechanics parameter, was not available. The behaviors of high temperature fatigue crack propagation by the J-integral(${\Delta}J_f$, J' and ${\Delta}J_c$), elasto-plastic fracture mechanics parameter, were investigated in a number of stress waveforms. The fast-fast waveform exhibited cycle-dependent(fatigue type), the slow-fast and the hold time with 500sec waveforms appear to be time-dependent(creep type) and the fast-slow and the hold time with 5, 25sec waveforms exhibited conbined behavior of both types(fatigue-creep conbined type).

  • PDF

단섬유/입자 혼합 금속복합재료의 피로균열진전 거동 (Fatigue Crack Growth Behavior of Short fiber/Particle Hybrid Metal Matrix Composites)

  • 오광환;장준호;한경섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.219-222
    • /
    • 2004
  • The effects of short fiber and particle hybrid reinforcement on fatigue crack propagation behaviors in aluminum matrix composites have been investigated. Single and hybrid reinforced 6061 aluminum containing same 20 $Al_2O_3\;volume\%$ with four different constituent ratios of short fibers and particles were prepared by squeeze casting method and tested to check the near-threshold and stable crack growth behavior. The fatigue threshold of the composites increased with portion of particle contents and showed the improved crack resistance especially in low stress intensity range. Addition of particle instead of short fiber also increased fracture toughness due to increase of inter-reinforcement distance. These increase in both fatigue threshold and fracture toughness eventually affected the fatigue crack growth behavior such that the crack growth curve shift low to high stress intensity factor value. Overall experimental results were shown that particle reinforcement was enhanced the fatigue crack resistance over the whole stress intensity factor range.

  • PDF

복합조직강의 미시조직변화가 피로파괴전파에 미치는 영향 (The Effects of the Microstructural Change of Dual Phase Steel on Fatigue Fracture Propagation)

  • 오세욱;김웅집
    • 한국해양공학회지
    • /
    • 제5권2호
    • /
    • pp.58-66
    • /
    • 1991
  • Not only difference of fatigue crack growth and propagation behavior resulted from the grain size, the hardness ratio and volume fraction in M.E.F. dual phase steel composed of martensite in hard phase and ferrite in soft phase, but also the effects of the plastic constraint were investigated by fracture mechanics and microstructural method. The main results obtained are as follows: 1) The fatigue endurance of M.E.F. steel increases with decreasing the grain size, increasing the ratio of hardness and volume fraction. 2) The initiation of slip and crack occures faster as the stress level goes higher. These phenomena result from the plastic constraint effect of the second phase. 3) The crack propagation rate in the constant stress level is faster as the grain size gets larger, the ratio of hardness lower and volume fraction smaller.

  • PDF

면외변형하의 이방성 띠판에 대한 동적계면균열 (Dynamic Interfacial Crack in Bonded Anisotropic Strip Under Out-of-Plane Deformation)

  • 박재완;최성렬
    • 대한기계학회논문집A
    • /
    • 제25권6호
    • /
    • pp.949-958
    • /
    • 2001
  • A semi-infinite interfacial crack propagated with constant velocity in two bonded anisotropic strips under out-of-plane clamped displacements is analyzed. Using Fourier integral transform the problem is formulated and the Wiener-Hopf equation is derived. By solving this equation the asymptotic stress and displacement fields near the crack tip are obtained, where the results get more general expressions applicable not only to isotropic/orthotropic materials but also to the extent of the anisotropic material having one plane of elastic symmetry for the interfacial crack. The dynamic stress intensity factor is obtained as a closed form, which is decreased as the velocity of crack propagation increases. The critical velocity where the stress intensity factor comes to zero is obtained, which agrees with the lower value between the critical values of parallel crack merged in the material 1 and 2 adjacent to the interface. Using the near tip fields of stresses and displacements, the dynamic energy release rate is also obtained as a form of the stress intensiy factor.

A Study on the Initial Crack Curving Angle of Isotropic/Orthotropic Bimaterial

  • Hawong, Jai-Sug;Shin, Dong-Chul;Lee, Ouk-Sub
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1594-1603
    • /
    • 2002
  • In this paper, when the initial propagation angle of a branched crack is calculated from the maximum tangential stress criterion (MTSC) and the minimum strain energy density criterion (MSEDC), it is essential that you use stress components in which higher order terms are considered and stress components at the position in a distance 0.005㎜ from the crack tip (=r). When an interfacial crack propagates along the interface at a constant velocity, the initial propagation angles of the branched crack are similar. to the mode mixities (phase angle) and the theoretical values obtained from MTSC and MSEDC. The initial propagation angle of the branched crack depends considerably on the stress intensity factor K$_2$.

2024-T3 A1 합금의 이방성이 피로균열진전속도와 정류거동에 미치는 영향 (Effect of Anisotropy on Fatigue Crack Propagation Rate and Arrest Behavior with 2024-T3 Alumunum Alloy)

  • 오세욱;김태형;오정종
    • 한국해양공학회지
    • /
    • 제7권1호
    • /
    • pp.124-132
    • /
    • 1993
  • In order to examine the effect of anisotropy and stress ratio on fatigue crack propagation rate and opening-closing behavior and also arrest behavior by single tension peak overload, the fatigue tests of constant amplitude atress and single tension peak overload adding to cycle of constant amplitude were carried out in stress ratio of -0.4, -0.2, and 0.4 with materials of T-L and L-T directions in 2024-T3 aluminum alloy plate. Crack opening-closing begavior were measured by the compliance method using COD gage and strain gage. In case of the crack opening-closing behavior was measured by strain gage, the effect of stress ratio is unchangeable. But in the case of COD gage, that is remarkably decreased. Fictitious effective stress intensity factor(U sub(f)) and effective stress intensity factor ratio(U) in L-T direction was higher than those in T-L direction and also threshold arrest overload ratio incrased as stress ratio decreased and that of T-L direction was higher than that in L-T direction.

  • PDF

반무한 탄성체의 헤르츠 접촉하의 경사진 표면균열의 전파거동 (Propagation Behavior of Inclined Surface Crack of Semi-Infinite Elastic Body under Hertzian Contact)

  • 김재호;김석삼;박중한
    • 대한기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.624-635
    • /
    • 1990
  • 본 연구에서는 마멸과정을 선형파괴역학적 관점에서 해석하여, 탄성체의 표면 에 산재되어 있는 표면균열의 전파거동을 마멸과정규명의 입장에서 살펴보고자 한다. 우선 마멸거동에 관한 파괴역학적 접근방식에 의한 마멸이론의 확립을 위해서, 표면균 열이 내부균열보다 그 전파 가능성이 높다고 한 Keer등의 주장에 착안하여 Hertz 접촉 압력하의 경사진 표면균열의 전파거동을 선형파괴역학적으로 해석하고자 한다. 이론 해석에 있어서는 표면균열을 인상전립의 연속분포로 치환하고, 전립밀도분포함수에 관 한 특이적분방정식을 유도해서 Erdogangupta의 방법을 이용하여 그 해를 구하였다.

7075-T735 Al 합금의 피로균열 진전속도와 정류거동에 미치는 응력비의 영향 (The Effect of Stress Ratio on Fatigue Crack Propagation Rate and Arrest Behavior in 7075-T735 Al Alloy)

  • 오세욱;강상훈;허정원;김태형
    • 한국해양공학회지
    • /
    • 제6권1호
    • /
    • pp.131-139
    • /
    • 1992
  • The understanding and appllication of fatigue crack propagation mechanism in variable amplitude loading is very important for life prediction of the air travel structures. Particularly, the retardation and arrest behavior of fatigue crack propagation by single tension overloading is essential to the understanding and appllication of fatigue crack propagation mechanism in variable amplitude loading. Numerous studies of the retardation behavior have been performed, however investigations of the arrest behavior have not been enough yet. As for the arrest behavior, Willenborg had reported that the overload shut-off ratio $[R_{so}=(K_{OL})/K_{max})_{crack arrest}]$ had been the material constant, but recently several investigators have reported that the overload shut-off ratio depends upon the stress ratio. In this study, authors have investigated the effect of stress ratio on the threshold overload shut-off ratio to generate arrest of fatigue crack growth in high tensile aluminum alloy 7075-T735 which have used in material for air travel structures, It has been $-0.4\leqqR\leqq0.4$ till now, the region of stress ratio investigated. The threshold overload shut-off ratio has decreased as stress ratio has increased in overall region of -$-0.4\leqqR\leqq0.4$ and the linearity has been seen in this material. Moreover, the experimental equation between $R_{so}$ and R has been made; The relation has been $R_{so}=-R+2.6$.

  • PDF

탄소성 응력집중부에서의 초기피로균열전파수명의 예측 (A Prediction of Initial Fatigue Crack Propagation Life in a notched Component Taking Elasto-Plastic Behavior)

  • 조상명;굴천조보
    • 한국해양공학회지
    • /
    • 제2권2호
    • /
    • pp.61-70
    • /
    • 1988
  • In order to consider the concept of the fitness for purpose'in fatigue design of offshore structure, fracture mechanics is applied to evaluate initial or weld defects. Generally, linear elastic fracture mechanics has been applied to tstimate initial fatigue crack propagation rate as well as long fatigue crack propagation rate. But, initial fatigue crack propagation rate in elasto-plastic notch field may not be characterized by application of stress intensity factor range .DELTA. K, because plastic effect due to stress concentration of notch may contribute to initial crack propagation. Therefore, to introduce the plastic effect into fatigue crack driving force, in this studty, the evaluating method of J-integral range .DELTA. J, was developed by willson was modified for application to notch field. In calculation of .DELTA. J obtained from the modified J-integral, stress gradient and crack closure behavior in the notch field were considered. The initial crack propagation rates in the notch fields of mild steels and high tensile strength steels were correlated to .DELTA. J. As the result, it was cleared that the present .DELTA. J is applicable to charachterize the fatigue crack propagation rates in both the elastic and elasto-plastic notch fields.

  • PDF