• 제목/요약/키워드: Crack opening displacement

검색결과 226건 처리시간 0.025초

파괴역학적 관점에서의 적정 필렛 형상에 관한 연구 (A Study on the Proper Fillet Shape in Fracture Mechanical Aspect)

  • 김철;양원호;조명래
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.214-220
    • /
    • 1999
  • In order to use effectively a machinery part with fillet, it is necessary to determine a proper fillet shape in design step, Study of such problem by fracture mechanical criterion is rare. So, this paper focuses on the design of fillet radius in fracture mechanical aspect. Finite element method was used to obtain crack tip stress intensity factor. Stress intensity factor was calculated by COD(crack opening displacement0method proposed by Ingraffea and Manu. The parameter used in this study are thickness ration, filet radium and crack length . If fillet radius increase , crack propagation may be accelerated. Critical crack length is inversely proportional to fillet radius.

  • PDF

Cohesive modeling of dynamic fracture in reinforced concrete

  • Yu, Rena C.;Zhang, Xiaoxin;Ruiz, Gonzalo
    • Computers and Concrete
    • /
    • 제5권4호
    • /
    • pp.389-400
    • /
    • 2008
  • In this work we simulate explicitly the dynamic fracture propagation in reinforced concrete beams. In particular, adopting cohesive theories of fracture with the direct simulation of fracture and fragmentation, we represent the concrete matrix, the steel re-bars and the interface between the two materials explicitly. Therefore the crack nucleation within the concrete matrix, through and along the re-bars, the deterioration of the concrete-steel interface are modeled explicitly. The numerical simulations are validated against experiments of three-point-bend beams loaded dynamically under various strain rates. By extracting the crack-tip positions and the crack mouth opening displacement history, a two-stage crack propagation, marked by the attainment of the peak load, is observed. The first stage corresponds to the stable crack advance, the second one, the unstable collapse of the beam.

SUP9강의 저온피로크랙 전파특성에 관한 연구 (A Study on the Fatigue Crack Propagation Characteristics for SUP9 Steel at Low Temperature)

  • 박경동;박상오
    • 한국해양공학회지
    • /
    • 제16권5호
    • /
    • pp.80-87
    • /
    • 2002
  • In this study, CT specimens were prepared from spring steel(SUP9) which was used in suspension of automobile for room temperature and low temperature service. We got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{\circ}C$, ­3$0^{\circ}C$, ­5$0^{\circ}C$, ­7$0^{\circ}C$ and ­10$0^{\circ}C$ in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range ΔKth in the early stage of fatigue crack growth (Region I) and stress intensity factor range ΔK in the stable of fatigue crack growth (Region II) was decreased in proportion to descend temperature. It is assumed that the fatigue resistance characteristics and fracture strength at low temperature and high temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region.

현가장치 STABILIZER BAR의 저온피로강도에 미치는 쇼트피닝의 영향 (Effect of Peening on Low Temperature Fatigue Strength Behavior of STABILIZER BAR in Suspension Material)

  • 정재욱;박경동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.353-358
    • /
    • 2004
  • We got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{circ}C$, $-60^{circ}C$, $-80^{circ}C$, and $-100^{circ}C$ in the range of stress ratio of 0.3 by means of opening mode displacement. And there is a difference between shot peened specimen and unpeened specimen. The purpose of this study is to predict the behavior of fatigue crack propagation as one of fracture mechanics on the compressive residual stress. Fatigue crack growth rate of shot peened metal was lower than that of unpeened metal. The compressive residual stress made an impact on tension and compression of the plasticity deformation in fatigue crack plasticity zone. That is. the constrained force about plasticity deformation was strengthened by resultant stress, which resulted from plasticity deformation and compressive residual stress in the process of fatigue crack propagation.

  • PDF

차량용 스프링강의 피로거동에 미치는 온도의 영향 (An Effect of Temperature on the Fatigue Crack Propagation Behavior of Spring Steel for Vehicle)

  • 박경동;류찬욱
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.83-90
    • /
    • 2004
  • In this study, CT specimens were prepared from spring steel(SUP9) processed shot peening which was room temperature and low temperature experiment. And we got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{\circ}C$, $-30^{\circ}C$, $-50^{\circ}C$, $-70^{\circ}C$,$-100^{\circ}C$, and $-150^{\circ}C$, in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range ΔKth in the early stage of fatigue crack growth (Region I)was increased but stress intensity factor range ΔK in the stable of fatigue crack growth (Region II) was decreased in proportion to decrease temperature. It is assumed that the fatigue resistance characteristics and fracture strength at low temperature and high temperature is considerably higher than that of room temperature in the early stage and stable of fatigue crack growth region.

An Experimental Study on Fracture Energy of Plain Concrete

  • Lee, Jaeha;Lopez, Maria M.
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권2호
    • /
    • pp.129-139
    • /
    • 2014
  • In this study, the concrete fracture energy was obtained using the three point notched beam test method developed by Hillerborg et al. (Cem Concr Res 6(6):773-782, 1976). A total of 12 notched concrete beams were tested under two different loading conditions: constant stroke control and constant crack mouth opening displacement (CMOD) control. Despite individual fracture energies obtained from the two different loading conditions showing some variation, the average fracture energy from both loading conditions was very similar. Furthermore, the results obtained support the idea that a far tail constant "A" could change the true fracture energy by up to 11 %, if it is calculated using CMOD instead of LVDT. The far tail constant "A" is determined using a least squares fit onto a straight line according to Elices et al. (Mater Struct 25(148):212-218, 1992) and RILEM report (2007). It was also observed that the selection of the end point can produce variations of the true fracture energy. The end point indicates the point in the experiment at which to stop. An end point of 2 mm has been recommended, however, in this study other end points were also considered. The final form of the bilinear softening curve was determined based on Elices and Guinea's methods (1992, 1994) and RILEM report (2007). This paper proposes a bilinear stress-crack opening displacement curve according to test results as well as the CEB-FIP model code.

Simulation of fracture in plain concrete modeled as a composite material

  • Bui, Thanh T.;Attard, Mario M.
    • Computers and Concrete
    • /
    • 제2권6호
    • /
    • pp.499-516
    • /
    • 2005
  • A composite model is used to represent the heterogeneity of plain concrete consisting of coarse aggregates, mortar matrix and the mortar-aggregate interface. The composite elements of plain concrete are modeled using triangular finite element units which have six interface nodes along the sides. Fracture is captured through a constitutive single branch softening-fracture law at the interface nodes, which bounds the elastic domain inside each triangular unit. The inelastic displacement at an interface node represents the crack opening or sliding displacement and is conjugate to the internodal force. The path-dependent softening behaviour is developed within a quasi-prescribed displacement control formulation. The crack profile is restricted to the interface boundaries of the defined mesh. No re-meshing is carried out. Solutions to the rate formulation are obtained using a mathematical programming procedure in the form of a linear complementary problem. An event by event solution strategy is adopted to eliminate solutions with simultaneous formation of softening zones in symmetric problems. The composite plain concrete model is compared to experimental results for the tensile crack growth in a Brazilian test and three-point bending tests on different sized specimens. The model is also used to simulate wedge-type shear-compression failure directly under the loading platen of a Brazilian test.

$\Delta$J 적분의 경로독립성에 관한 연구 (Study on the Path Independency of $\Delta$J Integral)

  • 김태순;박재학;윤기봉
    • 한국안전학회지
    • /
    • 제11권2호
    • /
    • pp.16-24
    • /
    • 1996
  • In this study we simulate the fatigue test of a compact tension specimen and obtain the displacements, stresses and strains by using the finite element method. And we examine the path independency of $\Delta$J integral values and compare it with $\Delta$J integral values calculated from load-load line displacement curve. From the results of this study, we can find that $\Delta$J integral show the path Independency for saturated materials. We can also find that the path independency of $\Delta$J Is not satisfied when different material Is assumed near the crack tip, but the difference in $\Delta$J is small. And $\Delta$J integral values calculated from load-load line displacement is very analogous with those from integration path but always have lower values than those from integration paths. In the case of crack closing, we found that $\Delta$J integral values from load-load line displacement should be calculated with the load Increment values based on the crack opening point. The unsaturated material is also simulated and its $\Delta$J shows different values according to the path, but the difference is small.

  • PDF

관통균열 세관의 파열압력 예측을 위한 탄소성 파괴역학 해석 (Elastic-plastic Fracture Mechanics Analyses for Burst Pressure Prediction of Through-wall Cracked Tubes)

  • 장윤석;문성인;김영진;황성식;김정수;김윤재
    • 대한기계학회논문집A
    • /
    • 제29권10호
    • /
    • pp.1361-1368
    • /
    • 2005
  • The structural and leakage integrity of steam generator tubes should be sustained all postulated loads with appropriate margin even if a crack is present. During the past three decades, for effective integrity evaluation, several limit load solutions have been used world-widely. However, to predict accurately load carrying capacities of specific components under different conditions, the solutions have to be modified by using lots of experimental data. The purpose of this paper is to propose a new burst pressure estimation scheme based on fracture mechanics analyses for steam generator tube with an axial or circumferential through-wall crack. A series of three dimensional elastic-plastic finite element analyses were carried out and, then, closed-form estimation equations with respect to both J-integral and crack opening displacement were derived through reference stress method. The developed engineering equations were utilized for structural integrity evaluation and the resulting data were compared to the corresponding ones fiom experiments as well as limit load solutions. Thereafter, since the effectiveness was proven by promising results, it is believed that the proposed estimation scheme can be used as an efficient tool for integrity evaluation of cracked steam generator tubes.

Fracture behavior of fly ash concrete containing silica fume

  • Zhang, Peng;Gao, Ji-Xiang;Dai, Xiao-Bing;Zhang, Tian-Hang;Wang, Juan
    • Structural Engineering and Mechanics
    • /
    • 제59권2호
    • /
    • pp.261-275
    • /
    • 2016
  • Effect of silica fume on fresh properties, compressive strength at 28 days and fracture behavior of fly ash concrete composite were studied in this paper. Test results indicated that the fluidity and flowability of fly ash concrete composites decreased and fly ash concrete composite are more cohesive and appear to be sticky with the addition of silica fume. Addition of silica fume was very effective in improving the compressive strength at 28 days of fly ash concrete composite, and the compressive strength of fly ash concrete composite has a trend of increase with the increase of silica fume content. Results also indicated that all the fracture parameters of effective crack length, fracture toughness, fracture energy, the critical crack opening displacement and the maximum crack opening displacement of fly ash concrete composite decreased with the addition of silica fume. When the content of silica fume increased from 3% to 12%, these fracture parameters decreased gradually with the increase of silica fume content. Furthermore, silica fume had great effect on the relational curves of the three-point bending beam specimen. As the silica fume content increased from 3% to 12%, the areas surrounded by the three relational curves and the axes were becoming smaller and smaller, which indicated that the capability of concrete composite containing fly ash to resist crack propagation was becoming weaker and weaker.