• Title/Summary/Keyword: Crack growth analysis

Search Result 460, Processing Time 0.041 seconds

Aging Characteristic of Intermetallic Compounds and Bonding Strength of Flip-Chip Solder Bump (플립 칩 솔더 범프의 접합강도와 금속간 화합물의 시효처리 특성)

  • 김경섭;장의구;선용빈
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.1
    • /
    • pp.35-41
    • /
    • 2002
  • Flip-chip interconnection that uses solder bump is an essential technology to improve the performance of micro-electronics which require higher working speed, higher density, and smaller size. In this paper, the shear strength of Cr/Cr-Cu/Cu UBM structure of the high-melting solder bump and that of low-melting solder bump after aging is evaluated. Observe intermetallic compound and bump joint condition at the interface between solder and UBM by SEM and TEM. And analyze the shear load concentrated to bump applying finite element analysis. As a result of experiment, the maximum shear strength of Sn-97wt%Pb which was treated 900 hrs aging has been decreased as 25% and Sn-37wt%Pb sample has been decreased as 20%. By the aging process, the growth of $Cu_6/Sn_5$ and $Cu_3Sn$ is ascertained. And the tendency of crack path movement that is interior of a solder to intermetallic compound interface is found.

  • PDF

Analysis of Acoustic Emission Signals during Long-Term Strength Tests of Brittle Materials (취성재료의 장기 강도시험 중 미소파괴음 신호 분석)

  • Cheon, Dae-Sung;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.121-131
    • /
    • 2017
  • We studied the time-dependent behaviors of rock and concrete materials by conducting the static and dynamic long-term strength tests. In particular, acoustic emission(AE) signals generated while the tests were analyzed and used for the long-term stability evaluation. In the static subcritical crack growth test, the long-term behavior and AE characteristics of Mode I and Mode II were investigated. In the dynamic long-term strength test, the fatigue limit and characteristics of generation of AE were analyzed through cyclic four points bending test. The graph of the cumulative AE hits versus time showed a shape similar to that of the creep curve with the first, second and third stages. The possibility for evaluating the static and dynamic long-term stability of rock and concrete is presented from the log - log relationship between the slope of the secondary stage of cumulative AE hits curve and the delayed failure time.

Analysis of Mean Deviation in Sliding-wear-rate of Carbon Steel with Various Pearlite Volume Fractions (탄소강의 펄라이트 분율에 따른 미끄럼 마멸속도 편차 분석)

  • Kim, M.G.;Gwon, H.;Hur, H.L.;Kim, Y.-S.
    • Transactions of Materials Processing
    • /
    • v.24 no.3
    • /
    • pp.205-211
    • /
    • 2015
  • The current investigation was performed to study sliding-wear-rate deviation (wear-rate data scatter) in carbon steels with various microstructures. Pure iron, 0.2 wt. % C steel, 0.45 wt. % C steel, and bearing steel (AISI52100) were used for the investigation. These steels possess different microstructures. Microstructures of the pure iron, two carbon steel and the bearing steel were full ferrite, ferrite + pearlite and full pearlite, respectively. Depending on the carbon content, the carbon steel had different pearlite-volume fractions. Dry sliding wear tests of the steel were conducted using a ball-on-disk wear tester at a sliding speed of 0.1 m/s using a bearing ball (AISI52100) as a counterpart. Applied load and sliding distance were 100 N and 300 m, respectively. More than three (up to twelve) tests were conducted for each steel under the same conditions, and the mean deviations in the wear rate of the steel (microstructure) were compared. The wear-rate deviation in the steel with ferrite + pearlite microstructure was higher than that with ferrite microstructure, and the deviation decreased with the increase of pearlite volume fraction. The pure iron and the bearing steel specimens showed much less deviation. The high deviation observed from the ferrite + pearlite steel was attributed to irregular subsurface-crack nucleation and growth at the interface between the two micro constituents (ferrite and pearlite) during the wear test.

Development of a novel fatigue damage model for Gaussian wide band stress responses using numerical approximation methods

  • Jun, Seock-Hee;Park, Jun-Bum
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.755-767
    • /
    • 2020
  • A significant development has been made on a new fatigue damage model applicable to Gaussian wide band stress response spectra using numerical approximation methods such as data processing, time simulation, and regression analysis. So far, most of the alternative approximate models provide slightly underestimated or overestimated damage results compared with the rain-flow counting distribution. A more reliable approximate model that can minimize the damage differences between exact and approximate solutions is required for the practical design of ships and offshore structures. The present paper provides a detailed description of the development process of a new fatigue damage model. Based on the principle of the Gaussian wide band model, this study aims to develop the best approximate fatigue damage model. To obtain highly accurate damage distributions, this study deals with some prominent research findings, i.e., the moment of rain-flow range distribution MRR(n), the special bandwidth parameter μk, the empirical closed form model consisting of four probability density functions, and the correction factor QC. Sequential prerequisite data processes, such as creation of various stress spectra, extraction of stress time history, and the rain-flow counting stress process, are conducted so that these research findings provide much better results. Through comparison studies, the proposed model shows more reliable and accurate damage distributions, very close to those of the rain-flow counting solution. Several significant achievements and findings obtained from this study are suggested. Further work is needed to apply the new developed model to crack growth prediction under a random stress process in view of the engineering critical assessment of offshore structures. The present developed formulation and procedure also need to be extended to non-Gaussian wide band processes.

Characterization of Alpha-Ga2O3 Epilayers Grown on Ni-Pd and Carbon-Nanotube Based Nanoalloys via Halide Vapor Phase Epitaxy (Ni-Pd-CNT Nanoalloys에서 성장한 α-Ga2O3의 특성분석)

  • Cha, An-Na;Lee, Gieop;Kim, Hyunggu;Seong, Chaewon;Bae, Hyojung;Rho, Hokyun;Burungale, Vishal Vilas;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.25-29
    • /
    • 2021
  • This paper demonstrates the utility of the Ni-Pd and carbon-nanotube (Ni-Pd-CNT)-based nanoalloy to improve the α-Ga2O3 crystal quality using the halide-vapor-phase epitaxy (HVPE) method. As result, the overall thickness of the α-Ga2O3 epitaxial layer increased from a Ni electroless plating time of 40 s to 11 ㎛ after growth. In addition, the surface morphologies of the α-Ga2O3 epilayers remained flat and crack-free. The full-width half-maximum results of the X-ray diffraction analysis revealed that the ($10{\bar{1}}4$) diffraction patterns decreased with increasing nominal thickness.

Development of Deterioration Prediction Model and Reliability Model for the Cyclic Freeze-Thaw of Concrete Structures (콘크리트구조물의 반복적 동결융해에 대한 수치 해석적 열화 예측 및 신뢰성 모델 개발)

  • Cho, Tae-Jun;Kim, Lee-Hyeon;Cho, Hyo-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.13-22
    • /
    • 2008
  • The initiation and growth processes of cyclic ice body in porous systems are affected by the thermo-physical and mass transport properties, as well as gradients of temperature and chemical potentials. Furthermore, the diffusivity of deicing chemicals shows significantly higher value under cyclic freeze-thaw conditions. Consequently, the disintegration of concrete structures is aggravated at marine environments, higher altitudes, and northern areas. However, the properties of cyclic freeze-thaw with crack growth and the deterioration by the accumulated damages are hard to identify in tests. In order to predict the accumulated damages by cyclic freeze-thaw, a regression analysis by the response surface method (RSM) is used. The important parameters for cyclic freeze-thawdeterioration of concrete structures, such as water to cement ratio, entrained air pores, and the number of cycles of freezing and thawing, are used to compose the limit state function. The regression equation fitted to the important deterioration criteria, such as accumulated plastic deformation, relative dynamic modulus, or equivalent plastic deformations, were used as the probabilistic evaluations of performance for the degraded structural resistance. The predicted results of relative dynamic modulus and residual strains after 300 cycles of freeze-thaw show very good agreements with the experimental results. The RSM result can be used to predict the probability of occurrence for designer specified critical values. Therefore, it is possible to evaluate the life cycle management of concrete structures considering the accumulated damages due to the cyclic freeze-thaw using the proposed prediction method.

Time-dependent Reduction of Sliding Cohesion due to Rock Bridges along Discontinuities (암석 브리지에 의한 불연속면 점착강도의 시간의존성에 관한 연구)

  • 박철환;전석원
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.167-174
    • /
    • 2004
  • This paper is to introduce an article published in Rock Mechanics and Rock Engineering, 2003. In this research, a fracture mechanics model is developed to illustrate the importance of time-dependence far brittle fractured rock. In particular a model is developed fer the time-dependent degradation of rock joint cohesion. Degradation of joint cohesion is modeled as the time-dependent breaking of intact patches or rock bridges along the joint surface. A fracture mechanics model is developed utilizing subcritical crack growth, which results in a closed-form solution for joint cohesion as a function of time. As an example, a rock block containing rock bridges subjected to plane sliding is analyzed. The cohesion is found to continually decrease, at first slowly and then more rapidly. At a particular value of time the cohesion reduces to value that results in slope instability. A second example is given where variations in some of the material parameters are assumed. A probabilistic slope analysis is conducted, and the probability of failure as a function of time is predicted. The probability of failure is found to increase with time, from an initial value of 5% to a value at 100 years of over 40%. These examples show the importance of being able to predict the time-dependent behavior of a rock mass containing discontinuities, even for relatively short-term rock structures.

Fabrication of carbon nano tube reinforced grass fiber composite and investigation of fracture surface of reinforced composites (CNT 첨가에 따른 유리섬유/섬유 복합재 제작 및 특성 평가)

  • Kim, Hyeongtae;Lee, Do-Hyeon;An, Woo-Jin;Oh, Chang-Hwan;Je, Yeonjin;Lee, Dong-Park;Cho, Kyuchul;Park, Jun Hong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.4
    • /
    • pp.159-165
    • /
    • 2021
  • The fiber composites have been investigated as lightweight structure material platforms for aerospace applications because their strength can be enhanced by adding reinforcement without a significant increase in weight. In this study, the fabrication and characterization of carbon nanotube (CNT) reinforced glass fiber composites are demonstrated to enhance the tensile strength of longitudinal direction along the glass fibers. Due to the reinforcement of CNT in epoxy layers, the yield strength of fiber/epoxy composites is enhanced by about 10 %. Furthermore, using scanning electron microscopy, analysis of fracture surfaces shows that mixed CNT in epoxy layers acts as necking agents between fractured surfaces of fiber/epoxy; thereby, initiation and evolution of crack across fiber composite can be suppressed by CNT necking between fractured surfaces.

Sensitivity Analysis of Finite Element Parameters for Estimating Residual Stress of J-Groove Weld in RPV CRDM Penetration Nozzle (원자로 CRDM 관통노즐 J-Groove 용접부 잔류응력 예측을 위한 유한요소 변수 민감도 해석)

  • Bae, Hong-Yeol;Kim, Ju-Hee;Kim, Yun-Jae;Oh, Chang-Young;Kim, Ji-Soo;Lee, Sung-Ho;Lee, Kyoung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1115-1130
    • /
    • 2012
  • In nuclear power plants, the reactor pressure vessel (RPV) upper head control rod drive mechanism (CRDM) penetration nozzles are fabricated using J-groove weld geometry. Recently, the incidences of cracking in Alloy 600 CRDM nozzles and their associated welds have increased significantly. The cracking mechanism has been attributed to primary water stress corrosion cracking (PWSCC), and it has been shown to be driven by welding residual stresses and operational stresses in the weld region. The weld-induced residual stress is the main factor contributing to crack growth. Therefore, an exact estimation of the residual stress is important for ensuring reliable operation. This study presents the residual stress computation performed for an RPV CRDM penetration nozzle in Korea. Based on two and three dimensional finite element analyses, the effect of welding variables on the residual stress variation is estimated for sensitivity analysis.

A Comparison Study of Model Parameter Estimation Methods for Prognostics (건전성 예측을 위한 모델변수 추정방법의 비교)

  • An, Dawn;Kim, Nam Ho;Choi, Joo Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.355-362
    • /
    • 2012
  • Remaining useful life(RUL) prediction of a system is important in the prognostics field since it is directly linked with safety and maintenance scheduling. In the physics-based prognostics, accurately estimated model parameters can predict the remaining useful life exactly. It, however, is not a simple task to estimate the model parameters because most real system have multivariate model parameters, also they are correlated each other. This paper presents representative methods to estimate model parameters in the physics-based prognostics and discusses the difference between three methods; the particle filter method(PF), the overall Bayesian method(OBM), and the sequential Bayesian method(SBM). The three methods are based on the same theoretical background, the Bayesian estimation technique, but the methods are distinguished from each other in the sampling methods or uncertainty analysis process. Therefore, a simple physical model as an easy task and the Paris model for crack growth problem are used to discuss the difference between the three methods, and the performance of each method evaluated by using established prognostics metrics is compared.