• 제목/요약/키워드: Crack direction

검색결과 546건 처리시간 0.024초

Mechanical behavior of sandstones under water-rock interactions

  • Zhou, Kunyou;Dou, Linming;Gong, Siyuan;Chai, Yanjiang;Li, Jiazhuo;Ma, Xiaotao;Song, Shikang
    • Geomechanics and Engineering
    • /
    • 제29권6호
    • /
    • pp.627-643
    • /
    • 2022
  • Water-rock interactions have a significant influence on the mechanical behavior of rocks. In this study, uniaxial compression and tension tests on different water-treated sandstone samples were conducted. Acoustic emission (AE) monitoring and micro-pore structure detection were carried out. Water-rock interactions and their effects on rock mechanical behavior were discussed. The results indicate that water content significantly weakens rock mechanical strength. The sensitivity of the mechanical parameters to water treatment, from high to low, are Poisson ratio (𝜇), uniaxial tensile strength (UTS), uniaxial compressive strength (UCS), elastic modulus (E), and peak strain (𝜀). After water treatment, AE activities and the shear crack percentage are reduced, the angles between macro fractures and loading direction are minimized, the dynamic phenomenon during loading is weakened, and the failure mode changes from a mixed tensile-shear type to a tensile one. Due to the softening, lubrication, and water wedge effects in water-rock interactions, water content increases pore size, promotes crack development, and weakens micro-pore structures. Further damage of rocks in fractured and caved zones due to the water-rock interactions leads to an extra load on the adjoining coal and rock masses, which will increase the risk of dynamic disasters.

Analytical solutions for vibrations of rectangular functionally graded Mindlin plates with vertical cracks

  • Chiung-Shiann Huang;Yun-En Lu
    • Structural Engineering and Mechanics
    • /
    • 제86권1호
    • /
    • pp.69-83
    • /
    • 2023
  • Analytical solutions to problems are crucial because they provide high-quality comparison data for assessing the accuracy of numerical solutions. Benchmark analytical solutions for the vibrations of cracked functionally graded material (FGM) plates are not available in the literature because of the high level of complexity of such solutions. On the basis of first-order shear deformation plate theory (FSDT), this study proposes analytical series solutions for the vibrations of FGM rectangular plates with side or internal cracks parallel to an edge of the plates by using Fourier cosine series and the domain decomposition technique. The distributions of FGM properties along the thickness direction are assumed to follow a simple power law. The proposed analytical series solutions are validated by performing comprehensive convergence studies on the vibration frequencies of cracked square plates with various crack lengths and under various boundary condition combinations and by performing comparisons with published results based on various plate theories and the theory of three-dimensional elasticity. The results reveal that the proposed solutions are in excellent agreement with literature results obtained using the Ritz method on the basis of FSDT. The paper also presents tabulations of the first six nondimensional frequencies of cracked rectangular Al/Al2O3 FGM plates with various aspect ratios, thickness-to-width ratios, crack lengths, and FGM power law indices under six boundary condition combinations, the tabulated frequencies can serve as benchmark data for assessing the accuracy of numerical approaches based on FSDT.

Research on three-point bending fatigue life and damage mechanism of aluminum foam sandwich panel

  • Wei Xiao;Huihui Wang;Xuding Song
    • Steel and Composite Structures
    • /
    • 제51권1호
    • /
    • pp.53-61
    • /
    • 2024
  • Aluminum foams sandwich panel (AFSP) has been used in engineering field, where cyclic loading is used in most of the applications. In this paper, the fatigue life of AFSP prepared by the bonding method was investigated through a three-point bending test. The mathematical statistics method was used to analyze the influence of different plate thicknesses and core densities on the bending fatigue life. The macroscopic fatigue failure modes and damage mechanisms were observed by scanning electron microscopy (SEM). The results indicate that panel thickness and core layer density have a significant influence on the bending fatigue life of AFSP and their dispersion. The damage mechanism of fatigue failure to cells in aluminum foam is that the initial fatigue crack begins the cell wall, the thinnest position of the cell wall or the intersection of the cell wall and the cell ridge, where stress concentrations are more likely to occur. The fatigue failure of aluminum foam core usually starts from the semi-closed unit of the lower layer, and the fatigue crack propagates layer by layer along the direction of the maximum shear stress. The results can provide a reference for the practical engineering design and application of AFSP.

18Ni 마르에이징강의 피로특성 및 유한요소해석 (Fatigue Characteristics and FEM Analysis of $18\%$Ni(200) Maraging Steel)

  • 최병기;장경천
    • 한국공작기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.75-82
    • /
    • 2005
  • Recently the needs of high reliable substances of high strength and high ductility are gradually increased with the development of aerospace industry. The characteristics of maraging steel has high ductililty, formability, corrosion resistant and high temperature strength and is easy to fabricate, weld and treat with heat, and maintain an invariable size even after heat treatment. e steels are furnished in the solution annealed condition and they achieve full properties through martensitic precipitation aging a relatively simple, low temperature heat treatment. As is true of the heat treating procedures, aging is a time/temperature dependent reaction. Therefore, the objective of this stud)'was consideration of fatigue characteristics according as Nb(niobium) content and time/temperature of heat treatment change. Also the stress analysis, fatigue lift, and stress intensity factor were compared with experiment results and FEA(finite element analysis) result. The maximum ftresses of)( Y, and Z axis direction showed about $2.12\times$10$^{2}$MPa, $4.40\times$10$^{2}$MPa and $1.32\times$10$^{2}$MPa respectively. The fatigue lives showed about $7\%$ lower FEA result than experiment result showing almost invariable error every analyzed cycle. Stress intensity factor of the FEA result was lower about $3.5~ 10\%$ than that of the experiment result showing that the longer fatigue crack ten添 the hi인or error. It considered that the cause for the difference was the modeled crack tip having always the same shape and condition regardless of the crack growth.

T형상용접 이음에서 매몰된 라멜라균열이 용접부의 기계적 강도에 미치는 영향 (Effects of the buried lamellar tears on the mechanical strength in the welded T joints)

  • 고진현
    • Journal of Welding and Joining
    • /
    • 제6권4호
    • /
    • pp.44-53
    • /
    • 1988
  • The mechanical strengths of buried lamellar tears located near the weld toe in the welded tee joints were evaluated in terms of the loss of load carrying capacity as a function of tear area. In static loading, the load carrying capacity was significantly reduced when tear intercepted over 10% of the cross-sectional area of the welded joints. However, the welded joints containing buried tears still failed at stresses over the yield strength of the base metal in the through-thickness direction in spite of the presence of tears up to 20-25% of the area. Fatigue strength of welded joints containing tears markedly reduced with increasing tear areas. Lehigh lamellar tearing test used in this study to produce speicmens was described in detail. The load carrying cpapacity in static loading was influenced by the reduction of supporting area whereas that in fatigue loading was influenced by the stress-concentration effects of lamellar tears and the reduction of supporting area. In bend tests, the pre-existing lamellar tears always grew up toward the weld toe. However, in fatigue loading, cracks grew up and down simultaneously form both the weld toe and the top of lamellar tears because of stress concentration. In fatigue loading, delaminations and decohesion of inclusion/matrix interface generated in multipass welds provided crack propagation paths and enhanced crack propagation because the tips of delaminations and deconhesios acted as stress raisers.

  • PDF

크레인 거더의 피로균열에 관한 실험적 연구(I) -피로균열의 발생과 진전- (Experimental Study on Fatigue Crack in Welded Crane Runway Girders(I) -Initiation and Propagation of Fatigue Crack-)

  • 임성우;김진호;장인화
    • 한국강구조학회 논문집
    • /
    • 제9권2호통권31호
    • /
    • pp.237-248
    • /
    • 1997
  • 크레인 주행거더에서 빈번히 발생되는3 종류의 균열을 재현하기 위해서 거더 길이 640 mm, 높이 600 mm, 폭 300 mm의 시험체 2기를 제작하여 피로실험을 수행하였다. 시험체의 균열은 재하점 부근과 가세트 단부 및 하부플랜지와 웨브의 모살용접부에서 발생하였다. 재하점 근방의 균열은 수직보강재가 위치한 상부플랜지와 웨브 사이의 모살용접부에서 발생해서 웨브의 대각선 방향으로 진전하였다. 또한 하부플랜지 종비드에서 발생된 균열은 주행거더방향에 수직으로 성장하였다. 크레인 주행거더의 각 부위의 피로등급은 JSSC 피로설계지침의 피로등급과 비교해 보면, 재하점 근방의 모살용접부는 E 등급, 가세트 단부는 G 또는 H 등급, 하부플랜지 종비드 부위는 D 등급 정도로 나타났다. 가세트 단부와 종비드 부위는 피로설계지침과 잘 일치하고 있음을 알 수 있다.

  • PDF

원전 증기발생기 전열관 확관법이 확관부위 잔류응력에 미치는 영향 (Effects of Expanding Methods on Residual Stress of Expansion Transition Area in Steam Generator Tube of Nuclear Power Plants)

  • 김용규;송명호
    • 에너지공학
    • /
    • 제21권4호
    • /
    • pp.362-372
    • /
    • 2012
  • 원전의 증기발생기 전열관은 압력경계 부위로 결함발생으로 인한 누설 시 방사능물질을 함유한 1차 계통의 냉각수가 2차 계통으로 새어나와 발전소 및 대기를 오염시키게 된다. 근래에 전열관의 균열결함은 대개 응력 부식균열이며 전열관의 확관부위, 슬러지 침적부위 그리고 U-bend 등에서 발생한다. 확관부위 및 U-bend 등에서의 균열발생인자 중 가장 영향을 미치는 인자는 잔류응력이다. 폭발확관법이 적용된 한국표준형원전(OPR-1000)의 운전경험에 따르면, 증기발생기 전열관 확관부위에서 가동 초기부터 응력부식균열이 발생해 왔으며, 특히 원주방향 균열이 대량 발생하고 있다. 따라서 본 연구에서는 확관방법에 따른 잔류응력의 분포 및 상태를 비교하였으며, 특정 방향이 우세한 원인을 살펴보았다.

고대와 현대 방짜수저의 균열발생 원인분석 (Failure Analysis of Cracks in Ancient and Modern Bronze Spoons)

  • 최병학;이범규;심종헌;고형순;조남철;이재성;박경균;김유찬
    • 한국재료학회지
    • /
    • 제26권10호
    • /
    • pp.528-534
    • /
    • 2016
  • The aim of this paper is to consider the effect of the manufacturing processes on corrosion and centerline cracking of ancient bronze spoons. The ancient bronze spoons in question were made by several steps of forging, in reheated condition with cast ingots. The manufacturing method is similar to that of the modern spoons. The investigations include observations from light and scanning electron microscopes of the microstructure in terms of the crack propagation. Cracks in the centerline are caused by solute segregation in the center-line region; this solute is solidified in the final stage of bronze spoon manufacture. Centerline cracking is also caused by ${\alpha}$ phase segregation, accompanied by forged overlapping along the longitudinal direction of the spoons. A vertical stripe with cracks along the centerline of the spoon's width is formed by folding in the wrought process. The overlapping area causes crack propagation with severe corrosion on the spoon surfaces over a period of a thousand years. The failure mechanisms of ancient bronze spoons may be similar to that of modern spoons, and the estimation of the failure mechanisms of ancient spoons can be appropriate to determine failure causes for such modern spoons.

솔더조인트의 신뢰성 표준화를 위한 취성파괴 메커니즘 및 평가법 연구 (Failure Mechanism and Test Method for Reliability Standardization of Solder Joints)

  • 김강동;허석환;장중순
    • 마이크로전자및패키징학회지
    • /
    • 제18권4호
    • /
    • pp.85-90
    • /
    • 2011
  • 솔더 접합부의 품질 신뢰성 문제는 얼라인먼트(Alignment)문제로 발생한 오픈불량, 기판 휨에 의한 HIP(Head In Pillow)불량, 열팽차 차이에 의한 솔더자체 크랙과 기계적인 충격에 의한 IMC층의 크랙이 중요한 불량이다. 특히 기판 소형화와 표면처리의 변화가 진행 되면서, 솔더 범프와 기판 사이 IMC층의 취성파괴가 더욱 이슈화가 되면서 연구가 활발하다. IMC의 형성과 성장 및 취성파괴의 메카니즘 연구를 통하여 기존 평가방법의 변별력 향상, 계량화 등의 개선이 필요하고, IMC 취성의 수준 향상 등 크랙에 대한 신뢰성 향상 방향을 위한 연구 방향을 제시하고자 한다.

이방향 휨인장 시험(Biaxial Flexure Test; BFT) 및 삼차원 유한요소 해석 (The Biaxial Flexure Test(BFT) method and its finite element analysis)

  • 김지환;지광습;강진구;오홍섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.693-696
    • /
    • 2008
  • 최근에 개발된 이방향 휨인장 시험법(Biaxial Flexure Test; BFT)을 적용하여 이축 인장강도를 측정한 결과 원형 시편에 1${\sim}$3개의 초기 균열이 불규칙 하게 발행한 후 파괴되는 것이 일반적이며, 실험체의 크기가 증가함에 따라 상대적으로 균열의 개수가 증가하는 양상을 갖는 것으로 관찰되었다. 또한, 일방향 휨인장과 마찬가지로 이방향 인장상태의 균열강도의 크기효과에 관한 연구를 위한 각종 변수의 선택에 따른 이방향 휨 인장시험체의 거동을 삼차원 유한요소 해석을 통해 분석하였으며, 지점간의 지름, 하중재하판의 지름, 시험체의 두께와 여유길이 등이 주요변수로 고려되었다. 분석결과 시험체가 b/a>0.4인 경우에서는 h/a가 증가할수록, 여유길이의 크기가 작을수록 이방향 휨인장 응력 산정식과 일치함을 알 수 있었다.

  • PDF