• 제목/요약/키워드: Crack Propagation Stage

검색결과 102건 처리시간 0.027초

압력용기용 강의 저온 피로 크랙 하한계 특성에 관한 연구(I) (A Study of Fatigue Crack Threshold Characteristics in Pressure Vessel Steel at Low Temperature)

  • 박경동;노태영;김영대;김형자;오명석;이경렬;김정호
    • 동력기계공학회지
    • /
    • 제4권1호
    • /
    • pp.81-87
    • /
    • 2000
  • In this study, CT specimens were prepared from ASTM SA516 Gr. 70 which was used for pressure vessel plates for room and low temperature service. And we got the following characteristics from fatigue crack growth test carried out in the environment of room and low temperature at $25^{\circ}C,\;-60^{\circ}C,\;-80^{\circ}C\;and\;-100^{\circ}C$ and in the range of stress ratio of 0.05 by means of opening mode displacement. At the constant stress ratio, the threshold stress intensity factor range ${\Delta}K_{th}$ in the early stage of fatigue crack growth (Region I) and stress intensity factor range ${\Delta}K$ in the stable of fatigue crack growth (Region II) was increased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm $d{\alpha}/dN\;-{\Delta}K$ in Region II, that is, the fatigue crack growth exponent m increased with descending temperature at the constant stress ratio. It assumed that the fatigue crack growth rate $d{\alpha}/dN$ is rapid in proportion to descend temperature in Region II and the cryogenic-brittleness greatly affect a material with decreasing temperature.

  • PDF

압력용기용강의 저온피로 크랙전락 하한계 특성에 관한 연구 (A Study on the Fatigue Crack Growth threshold Characteristic for Steel of Pressure Vessel at Low Temperature)

  • 박경동;하경준
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2001년도 춘계학술발표대회 개요집
    • /
    • pp.224-227
    • /
    • 2001
  • In this study, CT specimens were prepared hem ASTM SA516 which was used for pressure vessel plates for room and low temperature service. And we got the following characteristics from fatigue crack growth test carried out in the environment of room and low temperature at $25^{\circ}C$, -3$0^{\circ}C$, -6$0^{\circ}C$, -8$0^{\circ}C$, -l$0^{\circ}C$ and -l2$0^{\circ}C$ and in the range of stress ratio of 0.1, 0.3 by means of opening mode displacement. At the constant stress ratio, the threshold stress intensity factor range $\Delta K_{th}$ in the early stage of fatigue crack growth ( Region I ) and stress intensity factor range $\Delta$K in the stable of fatigue crack growth ( Region II) was increased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm da/dN - $\Delta$K in Region II, that is, the fatigue crack growth exponent m increased with descending temperature at the constant stress ratio. It assumed that the fatigue crack growth rate da/dN is rapid in proportion to descend temperature in Region H and the cryogenic-brittleness greatly affect a material with decreasing temperature.

  • PDF

SA516 강의 응력비에 따른 저온피로크랙 전파특성에 관한 연구 (A Study of Stress ratio Influence on the Fatigue Crack Growth of SA516 Steel at Low Temperature)

  • 박경동;하경준
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.320-325
    • /
    • 2001
  • In this study, CT specimen were prepared from Pressure Vessel Steel which was used for pressure vessel plates for room and low temperature service. And we got the following characteristics from fatigue crack growth test carried out in the environment of room and low temperature at $25^{\circ}C$, -3$0^{\circ}C$, -6$0^{\circ}C$, -8$0^{\circ}C$, -10$0^{\circ}C$ and -12$0^{\circ}C$ and in the range of stress ratio of 0.05 and 0.3 by means of opening mode displacement. At the constant street ratio, the threshold stress intensity factor range ΔK$_{th}$ in the early stage of fatigue crack growth(Region I) and stress intensity factor range ΔK in the stable of fatigue crack growth(Region II) was increased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm do/dN -ΔK in RegionII, that is, the fatigue crack growth exponent m increased with descending temperature at the constant stress ratio. It was assumed that the fatigue crack growth rate do/dN is rapid in proportion to descending temperature in Region IIand the cryogenic-brittleness greatly affect a material with decreasing temperature.e.greatly affect a material with decreasing temperature.

  • PDF

Two-stage crack identification in an Euler-Bernoulli rotating beam using modal parameters and Genetic Algorithm

  • Belen Munoz-Abella;Lourdes Rubio;Patricia Rubio
    • Smart Structures and Systems
    • /
    • 제33권2호
    • /
    • pp.165-175
    • /
    • 2024
  • Rotating beams play a crucial role in representing complex mechanical components that are prevalent in vital sectors like energy and transportation industries. These components are susceptible to the initiation and propagation of cracks, posing a substantial risk to their structural integrity. This study presents a two-stage methodology for detecting the location and estimating the size of an open-edge transverse crack in a rotating Euler-Bernoulli beam with a uniform cross-section. Understanding the dynamic behavior of beams is vital for the effective design and evaluation of their operational performance. In this regard, modal parameters such as natural frequencies and eigenmodes are frequently employed to detect and identify damages in mechanical components. In this instance, the Frobenius method has been employed to determine the first two natural frequencies and corresponding eigenmodes associated with flapwise bending vibration. These calculations have been performed by solving the governing differential equation that describes the motion of the beam. Various parameters have been considered, such as rotational speed, beam slenderness, hub radius, and crack size and location. The effect of the crack has been replaced by a rotational spring whose stiffness represents the increase in local flexibility as a result of the damage presence. In the initial phase of the proposed methodology, a damage index utilizing the slope of the beam's eigenmode has been employed to estimate the location of the crack. After detecting the presence of damage, the size of the crack is determined using a Genetic Algorithm optimization technique. The ultimate goal of the proposed methodology is to enable the development of more suitable and reliable maintenance plans.

Assessment of Fatigue and Fracture on a Tee-Junction of LMFBR Piping Under Thermal Striping Phenomenon

  • Lee, Hyeong-Yeon;Kim, Jong-Bum;Bong Yoo
    • Nuclear Engineering and Technology
    • /
    • 제31권3호
    • /
    • pp.267-275
    • /
    • 1999
  • This paper deals with the industrial problem of thermal striping damage on the French prototype fast breeder reactor, Phenix and it was studied in coordination with the research program of IAEA. The thermomechanical and fracture mechanics evaluation procedure of thermal striping damage on the tee-junction of the secondary piping using Green's function method and standard FEM is presented. The thermohydraulic(T/H) loading condition used in the present analysis is the random type thermal loads computed by T/H analysis on the turbulent mixing of the two flows with different temperatures. The thermomechanical fatigue damage was evaluated according to ASME code section 111 subsection NH. The results of the fatigue analysis showed that fatigue failure would occur at the welded joint within 90,000 hours of operation. The assessment for the fracture behavior of the welded joint showed that the crack would be initiated at an early stage in the operation. It took 42,698.9 hours for the crack to propagate up to 5 mm along the thickness direction. After then, however, the instability analysis, using tearing modulus, showed that the crack would be arrested, which was in agreement with the actual observation of the crack. An efficient analysis procedure using Green's function approach for the crack propagation problem under random type load was proposed in this study. The analysis results showed good agreement with those of the practical observations.

  • PDF

임플란트 구성요소의 파절면에 관한 주사전자현미경적 연구 - Part I: 임플란트 고정체 (Fracture Analysis of Implant Components using Scanning Electron Microscope - Part I : Implant Fixture)

  • 임광길;김대곤;조리라;박찬진
    • 구강회복응용과학지
    • /
    • 제26권3호
    • /
    • pp.297-309
    • /
    • 2010
  • 보철물의 실패는 파절로 인해 다수 발생하게 되지만 파절 발생시 그 원인을 파악하는 것은 어렵다. 보철물의 실패를 예방하고 예후를 예측하기 위해 보철물의 원인을 분석하는 것이 중요하며, 원인을 밝히기 위해 파절면 분석을 시행하게 된다. 파절면 분석은 파절면 뿐 아니라 주위 환경(응력 상황)에 대한 분석이 동반되며, 이를 이용하여 균열 진행, 파절 양상, 파절 원인 등을 파악하게 된다. 이 연구의 목적은 임상적으로 기능 후 파절된 임플란트 고정체의 파절면 분석을 시행하여 파절 기전 및 파절 원인(하중 양상)을 밝히는 것이다. 파절된 임플란트 고정체는 3년간 강릉-원주 대학교에 임플란트 고정체의 파절을 주소로 내원한 환자를 대상으로 수집하였다. 먼저 임상 및 방사선 사진 분석을 하였으며, 시편 세척 과정을 거쳐 주사 전자 현미경을 이용한 파절면 분석을 시행하였다. 임플란트 파절면 분석 시 피로 줄무늬, 벽개 파절 등의 파절 지표를 통해 피로 파절로 인해 파절이 발생되었음을 확인할 수 있었다.

차량용 스프링강의 피로수명에 미치는 압축잔류응력의 영향 (The Effect of Compressive Residual Stress on The Fatigue life in Spring Steel for vehicles)

  • 박경동;정찬기
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.281-287
    • /
    • 2002
  • Nowadays, many components used in machinery industry is required lightness and high strength. Therefore, the effects of compressive residual stress by shot-peening which is method to improve fatigue lift of spring steel (JISG SUP-9), which used in suspension of automobile, on fatigue crack growth characteristics was investigated with considering fracture mechanics. So, we can obtain followings 1. The fatigue crack growth rate on stage II is conspicuous with the size of compressive residual stress and is dependent on Paris equation. 2. Although the maximum compressive residual stress is deeply and widely formed from surface, fatigue life does not improve than when maximum compressive residual stress is formed in surface. 3. The threshold stress intensity factor range is increased with increasing compressive residual stress. 4. In fracture surface of fatigue crack growth it is investigated that compressive residual stress remarkably retards fatigue crack growth.

  • PDF

차량용 스프링강의 피로균열진전에 미치는 압축잔류응력의 영향 (The Effect of Compressive Residual Stress on The Fatigue life in Spring Steel for vehicles)

  • 박경동;하경준;박형동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권1호
    • /
    • pp.82-90
    • /
    • 2003
  • Nowadays, many components used in machinery industry is required lightness and high strength. The shot-peening method is used in order to improve the fatigue life of spring steel(JIS G SUP-9) which is used in suspension of automobile. The compressive residual is induced in this shot-peening process. This paper investigated the effect of the residual compressive stress on the fatigue crack growth characteristics. Main results are summarized as follows. 1. The fatigue crack growth rate on stage II is conspicuous with the level of compressive residual stress and is dependent on Paris equation. 2. Although the maximum compressive residual stress is deeply and widely formed from surface, it does not improve the fatigue life comparing when maximum compressive residual stress is formed in surface. 3. The threshold stress intensity factor range is increased with increasing compressive residual stress. 4. In fracture surface of fatigue crack growth it is investigated that compressive residual stress remarkably retards fatigue crack growth.

현가장치용 SUP-9강의 피로파괴에 미치는 압축잔류응력의 영향 (The Effect of Compressive Residual Stress on Fatigue Fracture of the Spring steel)

  • 박경동;진영범
    • 한국기계가공학회지
    • /
    • 제3권3호
    • /
    • pp.79-85
    • /
    • 2004
  • The lightness of components required in automobile and machinery industry is requiring high strength of components. In particular, fatigue failure phenomena, which happen in metal, bring on danger in human life and property. Therefore, antifatigue failure technology takes an important part of current industries. Currently, the shot peening is used for removing the defects from the surface of steel and improving the fatigue strength on surface. Therefore, in this paper the effect of compressive residual stress of spring steel(JISG SUP-9)by shot peening on fatigue crack growth characteristics in stress ratio(R=0 1, R=0 3, R=0 6)was investigated considering fracture mechanics. By using the methods mentioned above, I arrived at the following conclusions: (1) The fatigue crack growth rate(da/dN) of the shot peening material was lower than the unpeening material And in stage I, ${\Delta}K_{th}$, the threshold stress intensity factor, of the shot peening material is high in critical parts unlike the unpeening material. (2) Fatigue life shows more Improvement in the shot peening material than in the unpeening material. And compressive residual stress of surface on the shot peening processed operate the resistance of fatigue crack propagation.

  • PDF

스프링강의 피로파괴에 미치는 압축잔류응력의 영향 (A Study on the effect of Compressive residual stress on fatigue crack propagation behavior of the spring steel)

  • 진영범;박경동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.348-352
    • /
    • 2004
  • Recently the steel parts used for automiles and trains are required to be used under higher stress than ever before in need of the weight down. However, threr are a lot of problems with developing such of fatigue strength and fatigue life are mainly focused on by adopting residual stress. And got the following characteristics from crack growth test carried out stress ratio. Fatigue life shows more improvement in the Un-peening material. And Compressive residual stress of surface on the Shot-peening processed operate resistance force of fatigue. So we cam obtain fallowings. (1) The fatigue crack growth rate on stage II is conspicuous with the size of compressive residual stress and is dependent of Paris equation. (2) Although the maximum compressive residual stress is deeply and widely formed from surface, fatigue life does not improve than when maximum compressive residual stress is formed in surface. (3) The threshold stress intensity factor range is increased with increasing compressive residual stress.

  • PDF