• 제목/요약/키워드: Crack Initiation life

검색결과 186건 처리시간 0.025초

고온화 표면균열의 수명예측에 관한 파괴역학적 연구 (A Fracture Mechanic Study on Life Prediction of Surface Cracks at Elevated Temperature)

  • 서창민;김영호;손붕호;오상엽
    • 대한조선학회지
    • /
    • 제27권3호
    • /
    • pp.100-106
    • /
    • 1990
  • 본(本) 연구(硏究)에서는 304스테인리스강을 사용한 평활재와 작은 인공피트재의 고온 피로시험(疲勞試驗)과 크리프 시험(試驗)을 $593^{\circ}C$의 대기중에서 실시하고, 표면의 분포균열을 실온에서 레프리카법으로 연속적으로 관찰하고, 표면균열의 발생, 성장, 합체 거동을 관측하여, 균열 밀도(密度) 길이의 분포등의 정량적인 통계적(統計的) 성질(性質)에 대하여 검토하는 동시에, 파괴역학적으로 시험편의 수명을 지배하는 주균열의 성장거동 및 수명예측을 실시한 것이다. 또 실온의 결과와 고온피로(疲勞) 및 크리프 경우의 미소 분포균열의 통계적(統計的) 결과를 비교 검토하였다.

  • PDF

2 1/4 Cr-1 Mo강 劣化材의 微小 疲勞龜裂의 발생 및 진전거동 (Initiation and Growth Behavior of Small Fatigue Cracks in the Degraded 2 1/4 Cr-1 Mo Steel)

  • 곽상국;장재영;권재도;최선호;장순식
    • 대한기계학회논문집
    • /
    • 제16권1호
    • /
    • pp.53-62
    • /
    • 1992
  • 본 연구에서는 약 10년 정도 사용하여 경년 열화가 되었다고 예상되는 실구조 물의 일부를 입수하였으며 열화재의 특성과 비교하기 위하여 열처리에 의해 충격치를 회복시킨 재료를 회복재로 하여 두가지 재료에 대해 시험편을 제작하였따.열확현상 을 파악하기 위하여 평활재로 피로과정, 즉 미소 균열의 발생, 진전 및 복수 균열이 간섭합체하여 파단에 달하는 과정에 대하여 파괴역학적 견지에서 열화재와 회복재를 해석하고 이결과로 부터 확율변수를 추정하여 통계학적인 수명예측방법의 하나를 제시 하여 실구조물에 적용하는 방법에 대해 시도해 보았다.

Behavioral Characteristics of Fatigue Cracks in Small Hole Defects Located on Opposite Sides of the Shaft Cross Section

  • Sam-Hong;Il-Hyuk;Jeong-Moo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권4호
    • /
    • pp.36-42
    • /
    • 2004
  • The shaft with the circular cross section has symmetric structural combination parts to keep the rotating balance. Hence the crack usually initiates from symmetric combination parts due to the stress concentration of these parts. In this study to estimate the fatigue behavior of symmetric cracks, the fatigue test was performed by using a rotary bending tester and the specimen with symmetric defects in circular cross section. The characteristics of crack initiation and propagation on the symmetric surface cracks in circular cross section were examined. We also observed the internal crack using the oxidation coloring method and investigated the fatigue behavior using the relationship between the surface crack and the internal crack. As a result, the fatigue life of symmetric cracks was reduced by 35% compared to that of a single crack. We examined the characteristics of fatigue behavior of elements with symmetric cracks using internal crack propagation rate and maximum stress intensity factor range that were obtained from an approximation method.

Influence of laser peening on fatigue crack initiation of notched aluminum plates

  • Granados-Alejo, Vignaud;Rubio-Gonzalez, Carlos;Parra-Torres, Yazmin;Banderas, J. Antonio;Gomez-Rosas, Gilberto
    • Structural Engineering and Mechanics
    • /
    • 제62권6호
    • /
    • pp.739-748
    • /
    • 2017
  • Notches such as slots are typical geometric features on mechanical components that promote fatigue crack initiation. Unlike for components with open hole type notches, there are no conventional treatments to enhance fatigue behavior of components with slots. In this work we evaluate the viability of applying laser shock peening (LSP) to extend the fatigue life of 6061-T6 aluminum components with slots. The feasibility of using LSP is evaluated not only on damage free notched specimens, but also on samples with previous fatigue damage. For the LSP treatment a convergent lens was used to deliver 0.85 J and 6 ns laser pulses 1.5 mm in diameter by a Q-switch Nd: YAG laser, operating at 10 Hz with 1064 nm of wavelength. Residual stress distribution was assessed by the hole drilling method. A fatigue analysis of the notched specimens was conducted using the commercial code FE-Safe and different multiaxial fatigue criteria to predict fatigue lives of samples with and without LSP. The residual stress field produced by the LSP process was estimated by a finite element simulation of the process. A good comparison of the predicted and experimental fatigue lives was observed. The beneficial effect of LSP in extending fatigue life of notched components with and without previous damage is demonstrated.

Fatigue analysis of crumble rubber concrete-steel composite beams based on XFEM

  • Han, Qing-Hua;Yang, Guang;Xu, Jie;Wang, Yi-Hong
    • Steel and Composite Structures
    • /
    • 제25권1호
    • /
    • pp.57-65
    • /
    • 2017
  • The fatigue fracture of studs is the main reason for failure of composite beams based on massive engineering practices. Hence, studying the laws of cracks initiation and propagation are of great directive significance. eXtended Finite Element Method (XFEM) is an effective method in solving moving discontinuous problems in recent years. This paper extends our recent work on the fatigue damage analysis of stud shear connectors in the steel and crumble rubber concrete (RRFC) composite beams based on XFEM. The process of crack initiation to failure of the stud is simulated and an effective calculation criteria for the fatigue life of the composite beams is put forward. After the reliability of the numerical analysis is verified based on tests results, the extensive parametric study is conducted concerning effects of different rubber contents, shear connection degrees and the stress amplitudes. Results show that with the increasing rubber contents and shear connection degrees, the fatigue lives of composite beams increase obviously. Furthermore, the relationship between the fatigue life of the stud at the edge of the shear span and the whole composite beams is studied. Finally, the S-N curves of the single stud and the whole composite beams are put forward based on XFEM.

무한 평면체에 존재하는 복수 표면균열의 성장에 대한 수명예측용 시뮬레이션 개발에 관한 연구 (A Program Development of Life Prediction Simulation for Multi-Surface Cracks on the Finite Plate)

  • 황남성;서창민;남승훈
    • 한국해양공학회지
    • /
    • 제11권4호
    • /
    • pp.61-75
    • /
    • 1997
  • The social demand urges us to use some equipments and structures in high temperature environment. By this occasion, the necessity of studying the fatigue crack growth is an important aspect of new materials. However, the present situation is rarely to accumulate the fatigue data. Especially, 1Cr-1Mo-0.25V steel and 304 stainless steel have been increased to be used under the severe condition of high temperature. And so, the fatigue estimation of those materials is important and appropriate. Fatigue tests have been carried out to examine the crack initiation, growth behaviour for the small fatigue crack of 1Cr-1Mo-0.25V steel and 304 stainless steel at room temperature and 538^{\circ}C$. The remote measurement system which has many merits of checking and saving the image for detailed examination was applied to closely detect the crack length. Generally, the fatigue crack initiated in the form of multiple cracks and grew each other. And then it coalesced to become a major crack. The major crack governed the rest of the fatigue life. In the growing process, each peripheral cracks interact and grow for a certain period. After then, it coalesced and fractured. On the basis of the above experimental data for the small crack, a simulation program was developed to predict the residual life time and to estimate the integrity of machine elements and structures. At the same time, the simulation was extended to 1Cr-1Mo-0.25V steel. The simulation results have shown a good agreement to those of the experimental ones for both materials of 1Cr-1Mo-0.25V steel and 304 stainless steel with small cracks. The NASCRAC has applied to compare the fatigue life with the experimental results. And so, it can be said that the simulation program is valuable tools to the industrial fields.

  • PDF

압입축에 발생하는 프레팅 마모가 피로균열 발생 위치에 미치는 영향 (The Effect of Fretting Wear on Fatigue Crack Initiation Site of Press-fitted Shaft)

  • 이동형;권석진;최재붕;김영진
    • 한국철도학회논문집
    • /
    • 제10권5호
    • /
    • pp.546-553
    • /
    • 2007
  • 본 연구는 압입축에 프레팅이 발생할 경우 프레팅 마모에 의한 접촉형상의 변화가 접촉응력의 분포, 균열발생 위치에 미치는 영향을 분석하고자 하였다. 압입축의 프레팅 피로실험시 측정한 접촉면의 프로파일을 이용하여 유한요소 해석을 수행하고 피로 사이클별 마모형상 변화에 따른 접촉면의 응력 변화를 분석하였다. 접촉면의 응력 해석결과를 이용하여 프레팅 피로손상 파라미터와 다축 피로이론를 적용하여 마모에 따른 균열발생위치의 변화를 해석하고 실험과 비교, 분석하였다. 프레팅 마모에 의해 접촉 끝단의 응력집중은 초기에 급격하게 감소하며, 마모가 진행될수록 응력집중의 위치는 접촉끝단에서 안쪽으로 이동한다. 따라서 프레팅 마모에 의한 접촉응력의 변화가 균열발생 위치의 변차와 다중균열발생의 주요원인임을 명확히 하였다.

철도차량용 휠과 레일의 피로균열시작 수명에 관한 연구 (Study on the fatigue crack initiation life in rail wheel contact)

  • 김태완;설광조;조용주
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.733-738
    • /
    • 2002
  • In this study, contact fatigue in wheel-rail contact is simulated. It is necessary to calculate contact stress and subsurface stresses accurately to predict fatigue behavior. Contact stresses are obtained by contact analysis of semi-infinite solid based on influence function and subsurface stress field obtained by using rectangular patch solutions. Based on these stress values, several multiaxial high-cycle fatigue criteria are used and the critical loads corresponding to fatigue limits are calculated. The simulation results show that the critical load is decreasing rapidly and the site of crack initiation also moves rapidly to the surface from the subsurface when friction coefficient exceeds a specific value for all of three fatigue criteria.

  • PDF

국부변형률방법을 이용한 용접시험편의 피로수명 해석 (Fatigue Life Analysis of Butt-welded specimen by Local Strain Approach)

  • 이동형;서정원;구병춘;석창성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(III)
    • /
    • pp.73-78
    • /
    • 2003
  • The residual stresses and. distortions of structures by welding exert negative effect on the safety of railroad structures. This investigation performs a thermal elasto-plastic analysis using finite element techniques to evaluate residual stresses in butted-welded joint. Considering this initial residual stresses, local stress and strain at the critical location (weld toe) during the loading were analyzed by elastic plastic finite element analysis. Fatigue crack initiation life and fatigue crack propagation life of butt-welded specimen were predicted by local strain approach and Neuber's role and Paris law. It is demonstrated that fatigue life estimates by local strain approach closely approximate the experimental results.

  • PDF

A methodology for assessing fatigue life of a countersunk riveted lap joint

  • Li, Gang;Renaud, Guillaume;Liao, Min;Okada, Takao;Machida, Shigeru
    • Advances in aircraft and spacecraft science
    • /
    • 제4권1호
    • /
    • pp.1-19
    • /
    • 2017
  • Fatigue life prediction of a multi-row countersunk riveted lap joint was performed numerically. The stress and strain conditions in a highly stressed substructure of the joint were analysed using a global/local finite element (FE) model coupling approach. After validation of the FE models using experimental strain measurements, the stress/strain condition in the local three-dimensional (3D) FE model was simulated under a fatigue loading condition. This local model involved multiple load cases with nonlinearity in material properties, geometric deformation, and contact boundary conditions. The resulting stresses and strains were used in the Smith-Watson-Topper (SWT) strain life equation to assess the fatigue "initiation life", defined as the life to a 0.5 mm deep crack. Effects of the rivet-hole clearance and rivet head deformation on the predicted fatigue life were identified, and good agreement in the fatigue life was obtained between the experimental and the numerical results. Further crack growth from a 0.5 mm crack to the first linkup of two adjacent cracks was evaluated using the NRC in-house tool, CanGROW. Good correlation in the fatigue life was also obtained between the experimental result and the crack growth analysis. The study shows that the selected methodology is promising for assessing the fatigue life for the lap joint, which is expected to improve research efficiency by reducing test quantity and cost.