Browse > Article
http://dx.doi.org/10.12989/sem.2017.62.6.739

Influence of laser peening on fatigue crack initiation of notched aluminum plates  

Granados-Alejo, Vignaud (Centro de Ingenieria y Desarrollo Industrial)
Rubio-Gonzalez, Carlos (Centro de Ingenieria y Desarrollo Industrial)
Parra-Torres, Yazmin (Centro de Ingenieria y Desarrollo Industrial)
Banderas, J. Antonio (Centro de Ingenieria y Desarrollo Industrial)
Gomez-Rosas, Gilberto (Universidad de Guadalajara)
Publication Information
Structural Engineering and Mechanics / v.62, no.6, 2017 , pp. 739-748 More about this Journal
Abstract
Notches such as slots are typical geometric features on mechanical components that promote fatigue crack initiation. Unlike for components with open hole type notches, there are no conventional treatments to enhance fatigue behavior of components with slots. In this work we evaluate the viability of applying laser shock peening (LSP) to extend the fatigue life of 6061-T6 aluminum components with slots. The feasibility of using LSP is evaluated not only on damage free notched specimens, but also on samples with previous fatigue damage. For the LSP treatment a convergent lens was used to deliver 0.85 J and 6 ns laser pulses 1.5 mm in diameter by a Q-switch Nd: YAG laser, operating at 10 Hz with 1064 nm of wavelength. Residual stress distribution was assessed by the hole drilling method. A fatigue analysis of the notched specimens was conducted using the commercial code FE-Safe and different multiaxial fatigue criteria to predict fatigue lives of samples with and without LSP. The residual stress field produced by the LSP process was estimated by a finite element simulation of the process. A good comparison of the predicted and experimental fatigue lives was observed. The beneficial effect of LSP in extending fatigue life of notched components with and without previous damage is demonstrated.
Keywords
laser shock processing; fatigue damage; fatigue life; residual stress;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Hatamleh, O. (2009), "A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA 2195 joints", Int. J. Fatigue, 31, 974-988.   DOI
2 Hatamleh, O., Hill, M., Forth, S. and Garcia, D. (2009), "Fatigue crack growth performance of peened friction stir welded 2195 aluminum alloy joints at elevated and cryogenic temperatures", Mater. Sci. Eng. A, 519(1), 61-69.   DOI
3 Hatamleh, O., Lyons, J. and Forman, R. (2007), "Laser and shot peening effects on fatigue crack growth in friction stir welded 7075-T7351 aluminum alloy joints", Int. J. Fatigue, 29(3), 421-434.   DOI
4 Hfaiedh, N., Peyre, P., Song, H., Popa, I., Ji, V. and Vignal, V. (2015), "Finite element analysis of laser shock peening of 2050-T8 aluminum alloy", Int. J. Fatigue, 70, 480-489.   DOI
5 Hong, Z. and Chengye, Y. (1998), "Laser shock processing of 2024-T62 aluminum alloy", Mater. Sci. Eng. A, 257(2), 322-327.   DOI
6 Ivetic, G. (2011), "Three-dimensional FEM analysis of laser shock peening of aluminium alloy 2024-T351 thin sheets", Surf. Eng., 27(6), 445-453.   DOI
7 Achintha, M., Nowell, D., Fufari, D., Sackett, E.E. and Bache, M.R. (2014), "Fatigue behaviour of geometric features subjected to laser shock peening: Experiments and modelling", Int. J. Fatigue, 62, 171-179.   DOI
8 Kandil, F.A., Brown, M.W. and Miller, K.J. (1982), "Biaxial low-cycle fatigue fracture of 316 stainless steel at elevated temperatures", The Metals Society, 280, London.
9 Ivetic, G., Meneghin, I. and Troiani, E. (2011), "Numerical Analysis of Laser Shock Peening as a Process for Generation of Compressive Residual Stresses in Open Hole Specimens", Mater. Sci. Forum, 681, 267-272.   DOI
10 Ivetic, G., Meneghin, I., Troiani, E., Molinari, G., Ocana, J. L., Morales, M., Porro, J., Lanciotti, A., Ristori, V., Polese, C., Plaisier, J. and Lausi, A. (2012), "Fatigue in laser shock peened open-hole thin aluminium specimens", Mater. Sci. Eng. A, 534, 573-579.   DOI
11 Brown, M.W. and Miller, K.J. (1973), "A theory for fatigue failure under multiaxial stress-strain conditions", Proc. Inst. Mech. Eng., 187(65), 745-755.   DOI
12 Amrouche, A., Mesmacque, G., Garcia, S. and Talha, A. (2003), "Cold expansion effect on the initiation and the propagation of the fatigue crack", Int. J. Fatigue, 25, 949-954.   DOI
13 ASTM (2013), Annual book of ASTM Standards, No. E837-13a Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gauge Method.
14 Baumel, A. Jr. and Seeger, T. (1990), Materials Data for Cyclic Loading, Supplement 1, Elsevier Science Publishers, Amsterdam.
15 Chakherlou, T.N. and Vogwell, J. (2003), "The effect of cold expansion on improving the fatigue life of fastener holes", Eng. Fail. Anal., 10(1), 13-24.   DOI
16 Liu, J., Shao, X.J., Liu, Y.S. and Yue, Z.F. (2008), "Effect of cold expansion on fatigue performance of open holes", Mater. Sci. Eng. A, 477(1), 271-276.   DOI
17 Lacarac, V., Smith, D.J., Pavier, M.J. and Priest, M. (2000), "Fatigue crack growth from plain and cold expanded holes in aluminium alloys", Int. J. Fatigue, 22(3), 189-203.   DOI
18 Lavender, C.A., Honga, S.T., Smith, M.T., Johnson, R.T. and Lahrman, D. (2008), "The effect of laser shock peening on the life and failure mode of a cold pilger die", J. Maters. Proc. Technol., 204(1), 486-491.   DOI
19 Li, J., Zhang, Z., Sun, Q., Li, C. and Li, R. (2011), "A modified method to estimate fatigue parameters of wrought aluminum alloys", J. Mater. Eng. Perform., 20(7), 1323-1329.   DOI
20 Lu J.Z., Luoc, K.Y., Zhang, Y.K., Sun, G.F., Gu, Y.Y., Zhou, J.Z. and Ren, X.D. (2010), "Grain re- finement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel", Acta Metall, 58(16), 5354-5362.
21 Meggiolaro, M.A. and Castro, J.T.P. (2004), "Statistical evaluation of strain-life fatigue crack initiation predictions", Int. J. Fatigue, 26(5), 463-476.   DOI
22 Ding, K. and Ye, L. (2006), "Simulation of multiple laser shock peening of a 35CD4 steel alloy", J. Maters. Proc. Technol., 178(1), 162-169.   DOI
23 Correa, C., Ruiz de Lara, L., Diaz, M., Porro, J.A., Garcia-Beltran, A. and Ocana, J.L. (2015), "Influence of pulse sequence and edge material effect on fatigue life of Al2024-T351 specimens treated by laser shock processing", Int. J. Fatigue, 70 , 196-204.   DOI
24 Cuellar, S.D., Hill, M.R., DeWald, A.T. and Rankin, J.E. (2012), "Residual stress and fatigue life in laser shock peened open hole samples", Int. J. Fatigue, 44, 8-13.   DOI
25 Ding, K. (2003) "Three-dimensional dynamic finite element analysis of multiple laser shock peening processes", Surface Eng., 19(5), 351-358.   DOI
26 Dowling, N.E. (2007), Mechanical Behavior of Materials, Engineering Methods for Deformation, Fracture and Fatigue, Prentice-hall.
27 Fatigue theory reference manual (2002), FE-Safe documentation.
28 Peyre, P. and Fabbro, R. (1995), "Laser shock processing: a review of the physics and applications", Opt. Quant. Electron. 27(12), 1213-1229.   DOI
29 Ocana, J.L., Morales, M., Molpeceres, C. and Torres, J. (2004) "Numerical simulation of surface deformation and residual stresses fields in laser shock processing experiments", Appl. Surface Sci., 238(1), 242-248.   DOI
30 Park, J.H. and Song, J.H. (2003), "New estimation method of fatigue properties of aluminum alloys", J. Eng. Mater. Technol., 125(2), 208-214.   DOI
31 Ren, X.D., Zhan, Q.B., Yang, H.M., Dai, F.Z., Cui, C.Y., Sun, G.F. and Ruan, L. (2013), "The effects of residual stress on fatigue behavior and crack propagation from laser shock processing-worked hole", Mater. Des., 44, 149-154.   DOI
32 Rubio-Gonzalez, C., Ocana, J.L., Gomez-Rosas, G., Molpeceres, C., Paredes, M., Banderas, A., Porro, J. and Morales, M. (2004), "Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy", Mater. Sci. Eng. A, 386(1), 291-295.   DOI
33 Rubio-Gonzalez, C., Felix-Martinez, C., Gomez-Rosas, G., Ocana, J.L., Morales, M. and Porro, J. (2011), "Effect of laser shock processing on fatigue crack growth of duplex stainless steel", Mater. Sci. Eng. A, 528(3), 914-919.   DOI
34 Rubio-Gonzalez, C., Gomez-Rosas, G., Ocana, J.L., Molpeceres, C., Banderas, A., Porro, J. and Morales M. (2006), "Effect of an absorbent overlay on the residual stress field induced by laser shock processing on aluminum samples", Appl. Surf. Sci., 252(18), 6201-6205.   DOI
35 Rubio-Gonzalez, C., Gomez-Rosas, G., Ruiz, R., Nait, M. and Amrouche, A. (2015), "Effect of laser shock peening and cold expansion on fatigue performance of open hole samples", Struct. Eng. Mech., 53(5), 867-880.   DOI
36 Zhang, X.Q., Li, H., Yu, X.L., Zhou, Y., Duan, S.W., Li, S.Z., Huang, Z.L. and Zuo, L.S. (2015), "Investigation on effect of laser shock processing on fatigue crack initiation and its growth in aluminum alloy plate", Mater. Des., 65, 425-431.   DOI
37 Sanchez-Santana, U., Rubio-Gonzalez, C., Gomez-Rosas, G., Ocana, J.L., Molpeceres, C., Porro, J. and Morales, M. (2006), "Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing", Wear, 260(7), 847-854.   DOI
38 Tsay, L.W., Young, M.C. and Chen, C. (2003), "Fatigue crack growth behavior of laser-processed 304 stainless steel in air and gaseous hydrogen", Corr. Sci., 45(9), 1985-1997.   DOI
39 Yang, J.M., Her, Y.C., Han, N. and Clauer A. (2001), "Laser shock peening on fatigue behavior of 2024-T3 Al alloy with fastener holes and stopholes", Mater. Sci. Eng. A, 298(1), 296-299.   DOI
40 Zhou, J.Z., Huang, S., Sheng J., Lu, J.Z., Wang, C.D., Chen, K.M., Ruan, H.Y. and Chen, H.S. (2012), "Effect of repeated impacts on mechanical properties and fatigue fracture morphologies of 6061-T6 aluminum subject to laser peening", Mater. Sci. Eng. A, 539, 360-368.   DOI
41 Goel, M.D. (2015), "A Numerical study of ogive shape projectile impact on multilayered", V. Matsagar, Advances in Structural Engineering mechanics, Springer, Nueva Delhi, 247-257.