DOI QR코드

DOI QR Code

Influence of laser peening on fatigue crack initiation of notched aluminum plates

  • Received : 2017.01.21
  • Accepted : 2017.04.12
  • Published : 2017.06.25

Abstract

Notches such as slots are typical geometric features on mechanical components that promote fatigue crack initiation. Unlike for components with open hole type notches, there are no conventional treatments to enhance fatigue behavior of components with slots. In this work we evaluate the viability of applying laser shock peening (LSP) to extend the fatigue life of 6061-T6 aluminum components with slots. The feasibility of using LSP is evaluated not only on damage free notched specimens, but also on samples with previous fatigue damage. For the LSP treatment a convergent lens was used to deliver 0.85 J and 6 ns laser pulses 1.5 mm in diameter by a Q-switch Nd: YAG laser, operating at 10 Hz with 1064 nm of wavelength. Residual stress distribution was assessed by the hole drilling method. A fatigue analysis of the notched specimens was conducted using the commercial code FE-Safe and different multiaxial fatigue criteria to predict fatigue lives of samples with and without LSP. The residual stress field produced by the LSP process was estimated by a finite element simulation of the process. A good comparison of the predicted and experimental fatigue lives was observed. The beneficial effect of LSP in extending fatigue life of notched components with and without previous damage is demonstrated.

Keywords

References

  1. Achintha, M., Nowell, D., Fufari, D., Sackett, E.E. and Bache, M.R. (2014), "Fatigue behaviour of geometric features subjected to laser shock peening: Experiments and modelling", Int. J. Fatigue, 62, 171-179. https://doi.org/10.1016/j.ijfatigue.2013.04.016
  2. Amrouche, A., Mesmacque, G., Garcia, S. and Talha, A. (2003), "Cold expansion effect on the initiation and the propagation of the fatigue crack", Int. J. Fatigue, 25, 949-954. https://doi.org/10.1016/S0142-1123(03)00127-0
  3. ASTM (2013), Annual book of ASTM Standards, No. E837-13a Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gauge Method.
  4. Baumel, A. Jr. and Seeger, T. (1990), Materials Data for Cyclic Loading, Supplement 1, Elsevier Science Publishers, Amsterdam.
  5. Brown, M.W. and Miller, K.J. (1973), "A theory for fatigue failure under multiaxial stress-strain conditions", Proc. Inst. Mech. Eng., 187(65), 745-755. https://doi.org/10.1243/PIME_PROC_1973_187_161_02
  6. Chakherlou, T.N. and Vogwell, J. (2003), "The effect of cold expansion on improving the fatigue life of fastener holes", Eng. Fail. Anal., 10(1), 13-24. https://doi.org/10.1016/S1350-6307(02)00028-6
  7. Correa, C., Ruiz de Lara, L., Diaz, M., Porro, J.A., Garcia-Beltran, A. and Ocana, J.L. (2015), "Influence of pulse sequence and edge material effect on fatigue life of Al2024-T351 specimens treated by laser shock processing", Int. J. Fatigue, 70 , 196-204. https://doi.org/10.1016/j.ijfatigue.2014.09.015
  8. Cuellar, S.D., Hill, M.R., DeWald, A.T. and Rankin, J.E. (2012), "Residual stress and fatigue life in laser shock peened open hole samples", Int. J. Fatigue, 44, 8-13. https://doi.org/10.1016/j.ijfatigue.2012.06.011
  9. Ding, K. (2003) "Three-dimensional dynamic finite element analysis of multiple laser shock peening processes", Surface Eng., 19(5), 351-358. https://doi.org/10.1179/026708403225007563
  10. Ding, K. and Ye, L. (2006), "Simulation of multiple laser shock peening of a 35CD4 steel alloy", J. Maters. Proc. Technol., 178(1), 162-169. https://doi.org/10.1016/j.jmatprotec.2006.03.170
  11. Dowling, N.E. (2007), Mechanical Behavior of Materials, Engineering Methods for Deformation, Fracture and Fatigue, Prentice-hall.
  12. Fatigue theory reference manual (2002), FE-Safe documentation.
  13. Goel, M.D. (2015), "A Numerical study of ogive shape projectile impact on multilayered", V. Matsagar, Advances in Structural Engineering mechanics, Springer, Nueva Delhi, 247-257.
  14. Hatamleh, O. (2009), "A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA 2195 joints", Int. J. Fatigue, 31, 974-988. https://doi.org/10.1016/j.ijfatigue.2008.03.029
  15. Hatamleh, O., Hill, M., Forth, S. and Garcia, D. (2009), "Fatigue crack growth performance of peened friction stir welded 2195 aluminum alloy joints at elevated and cryogenic temperatures", Mater. Sci. Eng. A, 519(1), 61-69. https://doi.org/10.1016/j.msea.2009.04.049
  16. Hatamleh, O., Lyons, J. and Forman, R. (2007), "Laser and shot peening effects on fatigue crack growth in friction stir welded 7075-T7351 aluminum alloy joints", Int. J. Fatigue, 29(3), 421-434. https://doi.org/10.1016/j.ijfatigue.2006.05.007
  17. Hfaiedh, N., Peyre, P., Song, H., Popa, I., Ji, V. and Vignal, V. (2015), "Finite element analysis of laser shock peening of 2050-T8 aluminum alloy", Int. J. Fatigue, 70, 480-489. https://doi.org/10.1016/j.ijfatigue.2014.05.015
  18. Hong, Z. and Chengye, Y. (1998), "Laser shock processing of 2024-T62 aluminum alloy", Mater. Sci. Eng. A, 257(2), 322-327. https://doi.org/10.1016/S0921-5093(98)00793-X
  19. Ivetic, G. (2011), "Three-dimensional FEM analysis of laser shock peening of aluminium alloy 2024-T351 thin sheets", Surf. Eng., 27(6), 445-453. https://doi.org/10.1179/026708409X12490360425846
  20. Ivetic, G., Meneghin, I. and Troiani, E. (2011), "Numerical Analysis of Laser Shock Peening as a Process for Generation of Compressive Residual Stresses in Open Hole Specimens", Mater. Sci. Forum, 681, 267-272. https://doi.org/10.4028/www.scientific.net/MSF.681.267
  21. Ivetic, G., Meneghin, I., Troiani, E., Molinari, G., Ocana, J. L., Morales, M., Porro, J., Lanciotti, A., Ristori, V., Polese, C., Plaisier, J. and Lausi, A. (2012), "Fatigue in laser shock peened open-hole thin aluminium specimens", Mater. Sci. Eng. A, 534, 573-579. https://doi.org/10.1016/j.msea.2011.12.010
  22. Kandil, F.A., Brown, M.W. and Miller, K.J. (1982), "Biaxial low-cycle fatigue fracture of 316 stainless steel at elevated temperatures", The Metals Society, 280, London.
  23. Lacarac, V., Smith, D.J., Pavier, M.J. and Priest, M. (2000), "Fatigue crack growth from plain and cold expanded holes in aluminium alloys", Int. J. Fatigue, 22(3), 189-203. https://doi.org/10.1016/S0142-1123(99)00126-7
  24. Lavender, C.A., Honga, S.T., Smith, M.T., Johnson, R.T. and Lahrman, D. (2008), "The effect of laser shock peening on the life and failure mode of a cold pilger die", J. Maters. Proc. Technol., 204(1), 486-491. https://doi.org/10.1016/j.jmatprotec.2008.02.002
  25. Li, J., Zhang, Z., Sun, Q., Li, C. and Li, R. (2011), "A modified method to estimate fatigue parameters of wrought aluminum alloys", J. Mater. Eng. Perform., 20(7), 1323-1329. https://doi.org/10.1007/s11665-010-9765-3
  26. Liu, J., Shao, X.J., Liu, Y.S. and Yue, Z.F. (2008), "Effect of cold expansion on fatigue performance of open holes", Mater. Sci. Eng. A, 477(1), 271-276. https://doi.org/10.1016/j.msea.2007.05.034
  27. Lu J.Z., Luoc, K.Y., Zhang, Y.K., Sun, G.F., Gu, Y.Y., Zhou, J.Z. and Ren, X.D. (2010), "Grain re- finement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel", Acta Metall, 58(16), 5354-5362.
  28. Meggiolaro, M.A. and Castro, J.T.P. (2004), "Statistical evaluation of strain-life fatigue crack initiation predictions", Int. J. Fatigue, 26(5), 463-476. https://doi.org/10.1016/j.ijfatigue.2003.10.003
  29. Ocana, J.L., Morales, M., Molpeceres, C. and Torres, J. (2004) "Numerical simulation of surface deformation and residual stresses fields in laser shock processing experiments", Appl. Surface Sci., 238(1), 242-248. https://doi.org/10.1016/j.apsusc.2004.05.232
  30. Park, J.H. and Song, J.H. (2003), "New estimation method of fatigue properties of aluminum alloys", J. Eng. Mater. Technol., 125(2), 208-214. https://doi.org/10.1115/1.1562953
  31. Peyre, P. and Fabbro, R. (1995), "Laser shock processing: a review of the physics and applications", Opt. Quant. Electron. 27(12), 1213-1229. https://doi.org/10.1007/BF00326477
  32. Ren, X.D., Zhan, Q.B., Yang, H.M., Dai, F.Z., Cui, C.Y., Sun, G.F. and Ruan, L. (2013), "The effects of residual stress on fatigue behavior and crack propagation from laser shock processing-worked hole", Mater. Des., 44, 149-154. https://doi.org/10.1016/j.matdes.2012.07.024
  33. Rubio-Gonzalez, C., Felix-Martinez, C., Gomez-Rosas, G., Ocana, J.L., Morales, M. and Porro, J. (2011), "Effect of laser shock processing on fatigue crack growth of duplex stainless steel", Mater. Sci. Eng. A, 528(3), 914-919. https://doi.org/10.1016/j.msea.2010.10.020
  34. Rubio-Gonzalez, C., Gomez-Rosas, G., Ocana, J.L., Molpeceres, C., Banderas, A., Porro, J. and Morales M. (2006), "Effect of an absorbent overlay on the residual stress field induced by laser shock processing on aluminum samples", Appl. Surf. Sci., 252(18), 6201-6205. https://doi.org/10.1016/j.apsusc.2005.08.062
  35. Rubio-Gonzalez, C., Gomez-Rosas, G., Ruiz, R., Nait, M. and Amrouche, A. (2015), "Effect of laser shock peening and cold expansion on fatigue performance of open hole samples", Struct. Eng. Mech., 53(5), 867-880. https://doi.org/10.12989/sem.2015.53.5.867
  36. Rubio-Gonzalez, C., Ocana, J.L., Gomez-Rosas, G., Molpeceres, C., Paredes, M., Banderas, A., Porro, J. and Morales, M. (2004), "Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy", Mater. Sci. Eng. A, 386(1), 291-295. https://doi.org/10.1016/j.msea.2004.07.025
  37. Sanchez-Santana, U., Rubio-Gonzalez, C., Gomez-Rosas, G., Ocana, J.L., Molpeceres, C., Porro, J. and Morales, M. (2006), "Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing", Wear, 260(7), 847-854. https://doi.org/10.1016/j.wear.2005.04.014
  38. Tsay, L.W., Young, M.C. and Chen, C. (2003), "Fatigue crack growth behavior of laser-processed 304 stainless steel in air and gaseous hydrogen", Corr. Sci., 45(9), 1985-1997. https://doi.org/10.1016/S0010-938X(03)00036-2
  39. Yang, J.M., Her, Y.C., Han, N. and Clauer A. (2001), "Laser shock peening on fatigue behavior of 2024-T3 Al alloy with fastener holes and stopholes", Mater. Sci. Eng. A, 298(1), 296-299. https://doi.org/10.1016/S0921-5093(00)01277-6
  40. Zhang, X.Q., Li, H., Yu, X.L., Zhou, Y., Duan, S.W., Li, S.Z., Huang, Z.L. and Zuo, L.S. (2015), "Investigation on effect of laser shock processing on fatigue crack initiation and its growth in aluminum alloy plate", Mater. Des., 65, 425-431. https://doi.org/10.1016/j.matdes.2014.09.001
  41. Zhou, J.Z., Huang, S., Sheng J., Lu, J.Z., Wang, C.D., Chen, K.M., Ruan, H.Y. and Chen, H.S. (2012), "Effect of repeated impacts on mechanical properties and fatigue fracture morphologies of 6061-T6 aluminum subject to laser peening", Mater. Sci. Eng. A, 539, 360-368. https://doi.org/10.1016/j.msea.2012.01.125