• 제목/요약/키워드: Crack Growth Initiation

검색결과 209건 처리시간 0.026초

섬유의 적층 각도에 따른 섬유 금속 적층판의 압입 손상 거동 (Stacking Sequence Effects on Indentation Damage Behaviors of Fiber Metal Laminate)

  • 남현욱;김용환;정성욱;한경섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.204-209
    • /
    • 2001
  • In this research, the effects of fiber stacking sequence on damage behaviors of FML(Fiber Metal Laminates) subject to indentation loading. SOP (Singly Oriented Ply) FML and angle ply FML were fabricated to study fiber orientation effects and angle ply effects. FML were fabricated by using 1050 aluminum laminate and carbon/epoxy prepreg. To increase adhesive bonding strength, Al laminate was etched using FPL methods. The static indentation test were conducted by using UTM(5ton, Shimadzu) under the 2side clamped conditions. During the tests, load and displacement curve and crack initiation and propagation behaviors were investigated. As fiber orientation angle increases, the crack initiation load of SOP FML increases because the stiffness induced by fiber orientation is increased. The penetration load of SOP FML is influenced by the deformation tendency and boundary conditions. However, the macro-crack of angle ply FML was initiated by fiber breakage of lower ply because angle plies in Angle ply FML prevents the crack growth and consolidation. The Angle ply FML has a critical cross-angle which prevent crack growth and consolidation. Damage behavior of Angle ply FML is changed around the critical cross-angle.

  • PDF

잔류응력이 응력세기계수와 피로균열성장율에 미치는 영향 (The Effect of Residual Stress on Stress Intensity Factor and Fatigue Crack Growth Rate)

  • 이강용;김홍기
    • 대한조선학회지
    • /
    • 제21권1호
    • /
    • pp.43-47
    • /
    • 1984
  • The purpose of this paper is to investigate theoretically the effect of residual stress due to welding in stress intensity factor of a plate containing the Model I Crack in different crack size and location, and on fatigue crack growth rate. The initiation of crack is found to be possible only in the region of tensile residual stress. The most dangerous crack has the values of d/b and a/b equal to about 0.6 and 1.0, respectively, where d/b is the ratio of distance from the crack to welding bead and the width of tensile residual stress region and a/b is the ratio of crack length and tensile residual stress region. The crack perpendicular to and on the line of welding bead and with a/b equal to about 0.6 has maximum stress intensity factor. The theoretical fatigue crack growth rate under residual stress and applied stress, which is obtained from Forman's Law by stress superposition, is relatively in good agreement with Glinka's[8] experimental value. The fatigue crack growth is shown to be retarded due to residual stress distribution.

  • PDF

Fatigue Crack Growth and Fracture behavior of Rail Steels

  • Seo, Jung Won;Kwon, Seok Jin;Lee, Dong Hyeong;Kwon, Sung Tae;Choi, Ha Yong
    • International Journal of Railway
    • /
    • 제5권3호
    • /
    • pp.129-134
    • /
    • 2012
  • Contact fatigue damages on the rail surface, such as head checks and squats are a growing problem. The fatigue cracks forming on the contact surface grow according to load and lubricating conditions and may end up breaking the rail. Rail fracture can be avoided by preventing the cracks from reaching the critical length. Therefore, the crack growth rate needs to be estimated precisely according to the conditions of the track and load to develop a maintenance plan against rail damages. Therefore, it is important to understand the mechanism of cracks initiation and growth on a rail due to repetitive rolling contact. In this study, we have investigated the crack growth behavior on the rail surface by using the twin-disc tests and the finite element analysis.

SiC 입자 보강 Al 복합재료의 피로균열 진전거동 (The Fatigue Crack Growth Behavior of Silicon Carbide Particles Reinforced Aluminun Metal Matrix Composites)

  • 권재도;문윤배;김상태
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.122-131
    • /
    • 1995
  • The research trends for metal matrix composites have been on basic mechanical properties, fatigue behavior after aging and fractographic observations. In this study, the fatigue crack initiation as well as the fatigue crack growth behavior and the fracture mechanism were investigated through observations of the fracture surface on silicon carbide particles reinforced aluminum metal matrix composites(SiCp/Al). Based on the fractographic study done by scanning electron microscope and replica, crack growth path model and fracture mechanism are presented. The mechanical properties, such as the tensile strength, yield strength and elongation of SiCp/Al composites are improved in a longitudinal direction, however, the fatigue life is shorter than the basic Al6061 alloys. From fractographic observations, it is found that the failure mode is ductile in basic Ai6061 alloys. And because some SiC particles were pulled out from the matrix and a few SiC particles could be seen on the fracture surface of SiCp/Al, crack growth paths are believed to follow the interface of the matrix and its particles.

Crack growth prediction and cohesive zone modeling of single crystal aluminum-a molecular dynamics study

  • Sutrakar, Vijay Kumar;Subramanya, N.;Mahapatra, D. Roy
    • Advances in nano research
    • /
    • 제3권3호
    • /
    • pp.143-168
    • /
    • 2015
  • Initiation of crack and its growth simulation requires accurate model of traction - separation law. Accurate modeling of traction-separation law remains always a great challenge. Atomistic simulations based prediction has great potential in arriving at accurate traction-separation law. The present paper is aimed at establishing a method to address the above problem. A method for traction-separation law prediction via utilizing atomistic simulations data has been proposed. In this direction, firstly, a simpler approach of common neighbor analysis (CNA) for the prediction of crack growth has been proposed and results have been compared with previously used approach of threshold potential energy. Next, a scheme for prediction of crack speed has been demonstrated based on the stable crack growth criteria. Also, an algorithm has been proposed that utilizes a variable relaxation time period for the computation of crack growth, accurate stress behavior, and traction-separation atomistic law. An understanding has been established for the generation of smoother traction-separation law (including the effect of free surface) from a huge amount of raw atomistic data. A new curve fit has also been proposed for predicting traction-separation data generated from the molecular dynamics simulations. The proposed traction-separation law has also been compared with the polynomial and exponential model used earlier for the prediction of traction-separation law for the bulk materials.

Relationship between Pattern of Fatigue Crack Surface and Fatigue Crack Growth Behavior under $K_{III}$ Mode-Four Point Shear in Al 5083-O

  • Kim Gun-Ho;Won Young-Jun;Sakakur Keigo;Fujimot Takehiro;Nishioka Toshihisa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권4호
    • /
    • pp.474-482
    • /
    • 2006
  • Generally almost all fatigue crack growth is affected by mode I. For this reason a study on mode I has concentrated in the field of fracture mechanics. However the fatigue crack initiation and growth in machines and structures usually occur in mixed mode loading. If there is any relationship between the cause of fracture in mixed mode loading and fracture surface, fracture surface pattern will be the main mean explaining reasons of fatigue fracture and obtaining further information about fracture process. In this paper low point shear-fatigue test with Aluminum alloy hi 5083-O is carried out from this prospect and then the mixed mode distribution of fracture surface is examined from the result after identifying the generation of fatigue crack surface pattern. It was found from the experimental results that the fatigue crack surface pattern and the fatigue crack shear direction are remarkably consistent. Furthermore It is possible that the analysis of distribution of mixed mode through the fatigue crack surface pattern.

Al 5083-O재에 있어서 $K_{III}$ 모드 4점 전단 하에서의 피로파단면 무늬와 피로균열진전거동의 관계 (Relationship between Pattern of Fatigue Crack Surface and Fatigue Crack Growth Behavior under $K_{III}$ Mode-Four Point Shear in Al 5083-O)

  • 김건호;원영준;케이코 사카쿠라;타케히로 후지모토;토시히사 니시오카
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.43-44
    • /
    • 2006
  • Generally almost all fatigue crack growth is affected by model. For this reason a study on model has concentrated in the field of fracture mechanics. However the fatigue crack initiation and growth in machines and structures usually occur in mixed mode loading. If there is any relationship between the cause of fracture in mixed mode loading and fracture surface, fracture surface pattern will be the main mean explaining reasons of fatigue fracture and obtaining further information about fracture process. In this paper four point shear-fatigue test with Aluminum alloy Al 5083-O is carried out from this prospect and then the mixed mode distribution of fracture surface is examined from the result after identifying the generation of fatigue crack surface pattern. It was found from the experimental results that the fatigue crack surface pattern and the fatigue crack shear direction are remarkably consistent. Furthermore It is possible that the analysis of distribution of mixed mode through the fatigue crack surface pattern.

  • PDF

산성안개 하의 구조용강에서 피로균열의 발생 및 정류특성 (Properties of Fatigue Crack Initiation and Arrest in Structural Steel Under Acid Fog)

  • 김민건;김진학;김명섭;지정근;구은회
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.374-379
    • /
    • 2002
  • Corrosion fatigue tests were carried out to clarify the influence of acid fog as environmental factor on the fatigue strength of SM55C using rotary bending fatigue tester. The fatigue strength of acid fog specimen extremely decreased about 80% compared to that of distilled water specimen. In acid fog environment, a number of cracks commenced at corrosion pit and coalesced with the adjacent cracks during they propagate, and they formed a single non-propagating circumferential crack under the endurance stress of N=5$\times$10$\^$7/ cycles. Also, the depth of the crack is smaller than that of normal fatigue crack, so the crack has a veil small aspect ratio. The reason of this peculiar crack growth characteristics is that the crack opening-closure behaviors are hindered by corrosion products on the surface crack faces, and hence it is thinkable that the strong corrosion action like anodic dissolution for crack growth in depth direction is weaker compared with surface, resulting from faint pumping action of crack during loading-shedding processes.

보론 첨가강(AISI 51B20재)의 피로특성에 관한 연구 (A Study on the Fatigue Properties of Boron Steel (AISI 51B20))

  • 윤성훈;이종형;이경모
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.802-806
    • /
    • 2001
  • Chrome-molybden steel or chrome steel for machine structural use been shown to excellent hardenability adding boron of a small amount at low carbon steel. In the country boron steel has been used widely high strength volt and wear resistant components of construction equipment. SEM results showed classical fatigue fractures, consistent with surface crack initiation. The speciments were cycled using under load controlled rotary bending fatigue tests. In this study, the fatigue crack initiation as well as the fatigue crack growth behavior and the fracture mechanism were investigated through observations of fracture surface boron steel(AISI 51B20).

  • PDF

Brittle fracture analysis of the offset-crack DCDC specimen

  • Ayatollahi, M.R.;Bagherifard, S.
    • Structural Engineering and Mechanics
    • /
    • 제29권3호
    • /
    • pp.301-310
    • /
    • 2008
  • Applications of fracture mechanics in the strength analysis of ceramic materials have been lately studied by many researchers. Various test specimens have been proposed in order to investigate the fracture resistance of cracked bodies under mixed mode conditions. Double Cleavage Drilled Compression (DCDC) specimen, with a hole offset from the centerline is a configuration that is frequently used in subcritical crack growth studies of ceramics and glasses. This specimen exhibits a strong crack path stability that is due to the strongly negative T-stress term. In this paper the maximum tensile stress (MTS) criterion is employed for investigating theoretically the initiation of brittle fracture in the DCDC specimen under mixed mode conditions. It is shown that the T-stress has a significant influence on the predicted fracture load and the crack initiation angle. The theoretical results suggest that brittle fracture in the DCDC specimen is controlled by a combination of the singular stresses (characterized by KI and KII) and the non-singular stress term, T-stress.