A fictitious crack model was used to analyze fatigue crack growth under the influence of residual stress. In the fictitious crack model, crack is represented in terms of the separation of two adjacent interfaces and the constitutive equation between the separation and traction is assumed. The effect of fatigue loading was included in the constitutive equation by considering damage accumulation in the cohesive zone. To investigate the effect of the residual stress on the fatigue crack growth, we calculated the residual stress distribution due to transient heat flux to the specimen by finite element method. Fatigue crack growth was simulated by the fictitious crack model with repeated loading. The mode-I crack growth rates were compared for the cases with and without the compressive residual stress around the crack tip. It was observed that the mode-I crack growth can be suppressed by compressive residual stress.
We propose the crack growth rate equation which applied over three regions (threshold region, stable region, unstable region) of fatigue crack propagation. Constant stress amplitude fatigue tests are conducted for four materials under three stress ratios of R=0.05, R=0.2 and R=0.4. Materials which have different mechanical properties i.e. stainless steel, low carbon steel, medium carbon steel and aluminum alloy are used. The fatigue crack growth rate equation is given by $da/dN={\beta} (1-R)^{\delta}\({\DELTA}K-{\DELTA}K_t)^{\alpha} / (K_{cf}-K_{max})$${\alpha}, {\beta}$ , and ${\delta}$ are constants, and ${\Delta}K_t$ is stress intensity factor range at low ${\Delta}K$ region. The constants are obtained from nonlinear least square method. $K_{ef}$is critical fatigue stress intensity factor. The relation between half crack length and number of cycles obtained by integrating the crack growth rate equation is in agreement with the experimental data. It is also experimented with constant maximum stress and decreasing stress ratios, and the fatigue growth rate of each material is in accord with the proposed equation.
Methods to predict fatigue crack growth are compared in a quantitative manner for crack growth test data of 2024-T351 aluminum alloy under narrow and wide band random loading. In order to account for the effect of load ratio, crack closure model, Hater's equation and NASGRO's equation have been employed. Load interaction effect under random loading has been considered by crack closure model, Willenborg's model and Wheeler's model. The prediction method using the measured crack opening results provides the best result among the prediction methods discussed for narrow and wide band random loading data.
Methods to predict fatigue crack growth are compared in a quantitative manner for crack growth test data of 2024- T351 aluninum alloy under narrow and wide band random loading. In order to account for the effect of load ratio, crack closure model, Hater's equation and NASGRO's equation have been employed. Load interaction effect under random loading has been considered by crack closure model, Willenborg's model and Wheeler's model. The prediction method using the measured crack opening results provides the best result among the prediction methods discussed for narrow and wide band random loading data.
The Notched Ring Test(NRT) has proven to be very useful in determining the slow crack growth behavior of polyethylene pressure pipes. In particular, the test is simple and an order of magnitude shorter in experimental times as compared to the currently used Notched Pipe Test(NPT), which makes this method attractive for use as the accelerated slow crack growth test. In addition, since the NRT specimen is taken directly from the pipe, having maintained the cross-section, processing induced artifacts that would affect the slow crack growth behavior are not altered. This makes the direct comparison to the slow crack growth specimen in pipe from more meaningful. In this study, for comparison with other available slow crack growth methods, including the NPT, the stress intensity factor equation for NRT specimen was developed and demonstrated of its accuracy within 3% of that obtained from the finite element analysis. The equation was derived using a flexure formula of curved beam bending along with numerically determined geometric factors. The accuracy of the equation was successfully tested on 63, 110, 140, 160, 250, and 400 mm nominal pipe diameters, with crack depth ranging from 15 % to 45 % of the pipe wall thickness, and for standard dimensional ratio(SDR) of 9, 11, and 13.6. Using this equation the slow crack results from 110SDR11 NRT specimen were compared to that from the NPT specimen, which demonstrated that the NRT specimen was equivalent to the NPT specimen in creating the slow crack, however in much shorter experimental times.
We propose the crack growth rate equation which will model fatigue crack growth rate behavior such that constant stress amplitude fatigue crack growth behavior can be predicted. Constant stress amplitude fatigue tests are conducted for four materials under three stress ratios of R=0.2, R=0.4 and R=0.6. Materials which have different mechanical properties i.e. stainless steel, low carbon steel, medium carbon steel and aluminum alloy are used. Through constant stress amplitude fatigue test by using unloading elastic compliance method, it is confirmed that crack closure is a close relationship with fatigue crack propagation. We describe simply fatigue crack propagation behavior as a function of the effective stress intensity factor range ($\Delta$$K_{eff}$=U .$\Delta$K) for all three regions (threshold region, stable region). The fatigue crack growth rate equation is given by da / dN=A($\Delta$$K_{eff}$$\Delta$$K_{o}$ )$^{m}$ / ($\Delta$$K_{eff}$$\Delta$K) Where, A and m are material constants, and $\Delta$$K_{o}$ is stress intensity factor range at low $\Delta$K region. $K_{cf}$ is critical fatigue stress intensity factor.actor.
Effects of tensile and compression residual stresses in the welded SS41 and A17075-76 on fatigue crack propagation behavior are investigated when a crack propagates from residual stresses region. We propose the fatigue crack growth equation on tensile and compression residual stresses in welded metal. The results obtained in this experimental study are summarized as follows . 1 ) A fatigue crack growth equation which applied fatigue fracture behavior of the welded metal is proposed. (equation omitted) where, $\alpha$, $\beta$, ${\gamma}$ and $\delta$ are constants, and R$_{eff}$ is effective stress ratio [R$_{eff}$=(Kmin+Kres)/(Kmax+Kres)], Kcf is critical fatigue stress intensity factor. The constants are obtained from nonlinear least square method. The relation between crack length and number of cycles obtained by integrating the fatigue crack growth rate equation is in agreement with the experimental data. 2) The experimental results confirmed that the cause of crack extension and retardation by residual stresses has relation to the phenomenon of crack closure. 3) The relaxing trend of residual stresses by the crack propagation was greater In case of compressive residual stress than that of tensile residual stress in the welded metal.tal.
The main purpose of this study is to derive a law of fatigue crack growth rate in the region of elastic or elasto-plastic fracture mechanics at elevated temperatures through the application of dimensional analysis. An equation of elasto-plastic fatigue crack growth rate at elevated temperatures appeared a new Arrhenius type equation containing J-integral range and absolute temperature. The elastic or elasto-plastic crack growth rate equation shows a fairly good agreement with the experimental results for Cr-Mo-V rotor steel and Hastelloy-X alloy in the comparatively wide temperature ranges.
The stochastic properties of variation in fatigue crack growth are important in reliability and stability of structures. In this study,the stochastic model for the variation of fatigue crack growth rate was proposed in consideration of nonhomogeneity of materials. For this model, experiments were ocnducted on 7075-T6 aluminum alloy under the constant stress intensity factor range. The variation of fatigue crack growth rate was expressed by random variables Z and r based on the variation of material coefficients C and m in the paris-Erodogan's equation. The distribution of fatigue life with respect to the stress intensity factor range was evaluated by the stochastic Markov chain model based on the Paris-Erdogan's equation. The merit of proposed model is that only a small number of test are required to determine this this function, and fatigue crack growth life is easily predicted at the given stress intensity factor range.
In this work, fatigue tests by axial loading were carried out to investigate the effect of stress ratio on the growth behaviors of surface fatigue crack for SM45C steel and Al 2024-T4 alloy. The growth behaviors of surface crack have been monitored during fatigue process by measuring system attached CCTV and monitor. When the growth rates of surface crack were investigate by the concept of LEFM based on Newman-Raju's .DELTA.K, the dependence of stress ratio appears both SM45C steel and Al 2024-T4 alloy. Therefore, modified stress intensity factor range, .DELTA.K' [=(1+R)/sup n/.DELTA.K] are intorduced to eliminate the dependence of stress ratio. Using .DELTA.K', it is found that the dependence of stress ratio disappears both SM45C steel and Al 2024-T4 alloy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.