• Title/Summary/Keyword: Crack Energy Density

Search Result 86, Processing Time 0.024 seconds

Ambiguity of Minimum Strain Energy Density Criterion and Maximum Minimum Strain Energy Density Criterion (최소 변형에너지 밀도 기준의 모호성과 최대 극소 변형에너지 밀도 기준)

  • Gu, Jae-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1155-1162
    • /
    • 2001
  • Sihs minimum strain energy density criterion(SED) often used in the mixed mode problem has the ambiguity of the choice of minimum values. In this paper, as the method to solve the problem of SED, maximum minimum strain energy density criterion is proposed that the crack propagates in the direction of having the maximum among the minimum values of modified strain energy density factor(MS), i.e., sign($\sigma$(sub)$\theta$).Smin.

Fatigue Crack Growth Rates and Directions in STS304 under Mode I and Mixed Mode (단일 및 혼합모드하에서 304스테인리스강의 피로균열 진전속도와 방향특성)

  • 권종완;양현태
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.102-109
    • /
    • 2002
  • The fatigue crack growth under mixed mode condition has been discussed within the scope of linear fracture mechanics such as maximum tangential stress, maximum tangential principal stress and minimum strain energy density. The purpose of this study is to investigate the characteristics of fatigue test crack growth in 304 stainless steel under mixed node. The fatigue test results carried out by using inclined pre-crack specimens was compared to both of the theoretical predictions of the criteria, maximum tangential stress and stain energy density. As difference from theoretical analysis, the transition region from mixed mode to mode I appeared in the fatigue test. There is deep relationship between the angle of slanted pre-crack and transition. Therefore, as applying the different stress intensity factor to each node I+II and mode I, the directions and rates of fatigue crack growth are evaluated more accurately under mixed mode.

A Fundamental Analysis of an Interface Crack by Crack Energy Density (균열에너지밀도에 의한 이종재 계면균열의 기초적 검토)

  • 권오헌;도변승언;서창민;김영호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1458-1467
    • /
    • 1992
  • Recently, the composite materials have been researched actively by many researchers because of its useful properties. Especially, an interface crack on the dissimilar material exposes the behavior of the mixed mode crack even though under only the tension stress. In the previous papers, crack energy density(CED) was shown as the crack behavior evaluation parameter which can be expressed consistently from the onset until a final fracture. In a present paper, the basic properties of CED on the interface crack are examined because the results by CED at the homogeneous material above are also expected to be held at the dissimilar material. And we proposed that the contribution of each mode of CED can be separated and be evaluated. Furthermore, the total CED and contribution of each mode are evaluated by domain integral through a finite element analysis at the elastic crack model and the basic examination are carried out.

Study on Crack Propagation of Concrete beam under Mixed-Mode Loading by Minimum Strain Energy Density Failure Criterion (최소 변형 에너지 밀도 기준에 의한 콘크리트 보의 균열전파에 관한 연구)

  • 진치섭;이영호;신동익;오정민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.529-534
    • /
    • 1998
  • To find out an adequate failure criterion in two-dimensional linear elastic crack problems, finite element programs, SED, which determine stress intensity factors $K_I, K_{II}$, crack angle and peak load by the minimum strain energy density failure criterion were developed. In this program, the conventional quadratic isoparametric elements were used in all regions except the crack tip zone where triangular singular elements with 6 nodes were used. The results of SED were compared with the results of those which followed by the maximum circumferential tensile stress criteria and those by the maximum energy release rate criteria and those by Jenq and Shah`s experiments of the same geometry and material properties. The maximum energy release rate criteria were better close to those of the Jenq and Shah`s experiments than the maximum circumferential tensile stress criteria and the minimum strain energy density criteria.

  • PDF

A study on the pure Al weldability using a pulsed Nd : YAG laser (펄스형 Nd:YAG 레이저를 이용한 Al의 용접 특성연구)

  • 김덕현
    • Journal of Welding and Joining
    • /
    • v.11 no.1
    • /
    • pp.52-61
    • /
    • 1993
  • Laser welding of ASTM no. 1060 Al plate with a pulsed Nd: YAG laser of 200W average power was performed for end capping of KMRR nuclear fuel elements In this research, we performed basic welding experiments. Firstly, laser output parameters which affect laser welding parameters were studied by changing laser input parameters for effective welding of 1060 Al plates. We found that laser power density and pulse energy are important parameters for smooth bead shape. Secondly, welding parameters which affect weld width-to-depth ratio were studied by changing power density and pulse energy, shielding gas, and defocusing. We found that power density must be higher than 0.3 Mw/cm$^{2}$ pulse energy must be higer than 3 J. travel speed must not exceed 200mm/sec, laser focus must be existed beneath 2-3mm from plate surface and helium is proper shielding gas. Thirdly, we studied the weld defects of Al-1060 such as crack and porosity in lap-joint welding. We designed new welding geometry for crack free welding of Al-1060 plates, and obtained crack free weldment but with lack of fusion. However, with Ti, Zr grain refiner elements, we can weld Al plates without solidification hot crack. Finally, we studied the origin of porosity by changing shielding gas. And we found that porosity was resulted from entrapment of shielding gas by the collapsing keyhole.

  • PDF

The Evaluation of the Fracture Criterion having an Effect on Crack Extension Simulation for a Thin Sheet (박판시험편의 균열성장 시물레이션에 미치는 파괴기준 평가)

  • 권오헌
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.15-19
    • /
    • 2000
  • The exact estimation of the ductile crack growth in a thin sheet would be needed in part of the commercial transport aircraft industry fields. A 2-dimensional elastic plastic finite element analysis was carried out to simulate a stable crack extension in a thin sheet 2024 aluminium alloy. Two kinds of crack modeling were used to evaluate curves of the stable crack extension. And then CTOA(crack tip opening angle) and CTED(crack tip energy density) were calculated in order to determine whether they can be used as useful crack extension criterions in a thin sheet. Results indicate that stable crack extension behaviors were simulated well and CTED is more admirable even though CTOA also is reasonable as a criterion for a stable crack extension in a thin 2024 aluminium alloy sheet.

  • PDF

A Study on Mixed Mode Crack Initiation under Static Loading Condition

  • Koo, Jea-Mean
    • International Journal of Safety
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • In this paper, several different fracture criteria using the Eftis and Subramanian's stress solutions [1] are compared with the printed experimental results under different loading conditions. The analytical results of using the solution with non-singular term show better than without non-singular in comparison with the experimental data. And maximum tangential stress criterion (MTS) and maximum tangential strain energy density criterion (MTSE) can get useful results for several loading conditions.

The Evaluation of the Kinked Interface Crack Behavior in Dissimilar Materials by CED (CED에 의한 계면굴절균열의 진전거동평가)

  • Kwon, O.H
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.414-422
    • /
    • 1997
  • The characteristics on the extension of the CED(Crack Energy Density) concept to the interface kinked crack problems in a dissimilar are examined. Each mode contributions of CED are found by symmetric and antisymmetric conponents and domain independent integrals. Finite element calculation is carried out to simulate the interface kinked crack growth on a bimaterial. The focus is the establishment of fracture criterion with CED and finding the orientation of crack extension. From the results, a prediction about the extension behavior of an interface kinked crack can be done. And we show that CED can be a parameter to indicate fracture criterion at an interface kinked crack.

A Theoretical Model for Predicting Matrix Crack Density Growth (기지균열의 밀도증가를 예측하기 위한 이론적 모형)

  • 이종원;김진원;김응태;안석민
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.203-206
    • /
    • 2002
  • The present study proposes a theoretical model for predicting the matrix crack density growth of each layer in composite laminates subjected to thermo-mechanical loads. Each layer with matrix cracks is treated as an equivalent continuum of degraded elastic stiffnesses which are functions of the matrix crack density in each slyer. The energy release rate as a function of the degraded elastic stiffnesses is then calculated for each layer as functions of thermo-mechanical loads externally applied to the laminate. The matrix crack densities of each layer in general laminates are predicted as functions of the thermo-mechanical loads applied to a number of laminates. Comparisons of the present study with experimental data in the open literatures are also provided.

  • PDF

A Study on the Initial Crack Curving Angle of Isotropic/Orthotropic Bimaterial

  • Hawong, Jai-Sug;Shin, Dong-Chul;Lee, Ouk-Sub
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1594-1603
    • /
    • 2002
  • In this paper, when the initial propagation angle of a branched crack is calculated from the maximum tangential stress criterion (MTSC) and the minimum strain energy density criterion (MSEDC), it is essential that you use stress components in which higher order terms are considered and stress components at the position in a distance 0.005㎜ from the crack tip (=r). When an interfacial crack propagates along the interface at a constant velocity, the initial propagation angles of the branched crack are similar. to the mode mixities (phase angle) and the theoretical values obtained from MTSC and MSEDC. The initial propagation angle of the branched crack depends considerably on the stress intensity factor K$_2$.