• Title/Summary/Keyword: Crack Closure Effective Stress Intensity Range

Search Result 30, Processing Time 0.022 seconds

Development of Analytical Simulation Model for Fatigue Crack Propagation : Crack Closure Behavior Modeling (균열개폐구 거동을 고려한 피로균열전파 해석 모델의 개발 : 균열 개폐구 거동의 모형화)

  • C.W. Kim;I.S. Nho;H.H. Van;B.C. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.74-83
    • /
    • 2001
  • After the concept of fracture mechanics was applied to fatigue crack propagation by Paris. Paris' law is widely used to predict fatigue crack growth behavior. Since Elber proposed the effective stress intensity factor(SIF) and showed a good agreement with experimental results using the proposed SIF, emphasis in crack propagation studies has been placed on measuring the effective stress range ratio. This paper proposes a numerical model to simulate the crack closure and propagation behaviour under various loading spectrum. The validity of the proposed model is checked by comparing with the Toyosada numerical solutions on the crack propagation behaviour. Important insights developed are summarized.

  • PDF

Prediction d Fatigue Growth Behavior of Short Cracks (짧은 균열의 피로성장거동예측)

  • 최용식;우흥식;한지원
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.47-53
    • /
    • 1993
  • The growth of short cracks can be well described in terms of the effective stress intensity factor range, which is calculated on the base of crack closure. The relation between the crack opening SIF and crack length is determined from the experimental results. The crack opening SIF of short cracks, Kop, can be predicted from the crack opening SIF at threshold of long crack, Kop.L. The growth rate of short cracks at notch root can be predicted from the crack opening SIF of short cracks, Kop, and the growth equation of long cracks in region II.

  • PDF

The effects of 3.5% NaCl solution on the corrosion fatigue crack propagation characteristics of SS41 steel (SS41강의 부식피로 균열 전파특성에 미치는 3.5% NaCl수용액의 영향)

  • 오세욱;김재철;최영수
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.111-119
    • /
    • 1987
  • The corrosion fatigue crack propagation characteristics of SS41 steel in 3.5% NaCl solution have been evaluated for loading frequencies of 1Hz and 0.2Hz. A sine wave loading profile was used for fatigue testing. Each test was carried out at a constant stress ratio, R(0.1). The main results are summarized as follows; 1. Fatigue crack propagation rate was higher in 3.5% NaCl solution than in air, higher in the base metal than in the weld metal, and higher at f =0.2Hz than at f =1Hz. 2. The crack closure level of the base metal was not influenced by cyclic frequencies, but that of the weld metal was much influenced. 3. When the crack closure effect was eliminated in the evaluation of crack propagation characteristics by using $\Delta K_{eff}$, the envirommental influence was distinctly observed. At the base metal, crack propagation rate was enhanced by the hydrogen embrittlement, and the weld metal was reduced by the crac closure. 4. There was clearly observed hydrogen embrittlement and severely corroded aspect at fracture surface of lower frequency than that of higher frequency, and at that of base metal than that of the weld metal.

  • PDF

Fatigue Crack Growth Behavior in Ultrafine Grained Low Carbon Steel

  • Kim, Ho-Kyung;Park, Myung-Il;Chung, Chin-Sung;Shin, Dong-Hyuk
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1246-1252
    • /
    • 2002
  • Ultrafine grained (UFG) low carbon (0.15 wt.% C) steel produced by equal channel angula. pressing (ECAP) was tested for investigating the effect of load ratio on the fatigue crack growth rate. Fatigue crack growth resistance and threshold of UFG steel were lower than that of asreceived coarse grained steel. It was attributed to the less tortuous crack path. The UFG steel exhibited slightly higher crack growth rates and a lower △Kth with an increase of R ratio. The R ratio effect on crack growth rates and △Kth was basically indistinguishable at lower load ratio (R >0.3), compared to other alloys, which indicates that contribution of the crack closure vanishes. The crack growth rate curve for UFG steel exhibited a longer linear extension to the lower growth rate regime than that for the coarse grained as-received steel.

Effects of Strain Hardening Exponents on the Retardation of Fatigue Crack Propagation (가공경화지수가 피로균열 지연거동에 끼치는 영향)

  • 김상철;강동명
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1193-1199
    • /
    • 1990
  • Effects of strain hardening exponents on the behavior of fatigue crack propagation are experimentally investigated. The retardation effect of fatigue crack propagation after single overloading is investigated in relation to strain hardening exponent and crack closure. A relationship between crack opening ratio and strain hardening exponents is inspected through an examination of the crack closure behavior. An empirical equation relating retardation effect of fatigue crack propagation after single overloading, percent peak load and strain hardening exponent of materials is proposed.

Notched Specimen Fatigue and Kikukawa's Compliance Technique(Part I.On Some Basic Testing Results) (Notch재 피로와 Kikukawa-Compliance법 (제 1 보 기초적 검토))

  • ;;Park, Yung Jo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.2 no.1
    • /
    • pp.10-18
    • /
    • 1978
  • Kikukawa's compliance method using the conventional crack mouth clip-on gauge was proposed as a desired measurement technique to monitor the notched specimen fatigue behavior. The measurement technique makes it possible to continuously monitor the initiation and growth of incipient small part-through crack originated at the notch root and the phenomenon of crack closure. The variarion of natural flaw geometry with fatigue cycling was investigated. The test results on 7075-T6 aluminium alloy suggest the dependence of effective stress intensity factor range ratio .upsilon. on the maximum stress intensity factor .KAPPA.max.

Fatigue Growth Behavior of Short Cracks (짧은균열의 피로성장거동)

  • 최용식;홍성호;우흥식;한지원
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.1
    • /
    • pp.54-58
    • /
    • 1993
  • The fatigue growth behavior of short cracks were studied various load ratios. Computer-aided unloading elastic compliance method was employed to measure the closure and the length of short cracks. In the dc/dN-$\Delta$K relationships. the decreasing behavior of the growth rate of short cracks is due to the decrease of crack opening ratio with increasing crack length. Irrespective of load ratio. the growth rate of short cracks can be well decribed in terms of the effective stress intensity factor range $\Delta$K$_{eff}$, which is calculated on the base of crack closure. dc/dN-$\Delta$K$_{eff}$ relationships of short cracks are found to coincide well with the corresponding long crack relationships. accordingly. the growth rate of short cracks can be predicted using that of long cracks.ort cracks can be predicted using that of long cracks.cks.

  • PDF

Finite Element Simulation of Fatigue Crack Growth: Determination of Exponent m in Paris Law (피로균열성장의 유한요소 시뮬레이션: Paris 법칙의 지수 m의 결정)

  • Chu, Seok-Jae;Liu, Cong-Hao
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.713-721
    • /
    • 2012
  • The finite element simulations of fatigue crack growth are carried out. Using only the mechanical properties usually obtained from the tensile test as input data, we attempted to predict the fatigue crack growth behavior. The critical crack opening displacement is determined by monitoring the change in displacements at the node close to the crack tip. Crack growth is simulated by debonding the crack tip node. The exponent in the Paris law was determined and compared to the published exponent. Plotting with respect to the effective stress intensity factor range yielded more consistent results.

Fatigue Crack Propagation and Fatigue Life Evaluation of High-Performance Steel using Modified Forman Model (수정 Forman 모델을 이용한 고성능 강재의 피로균열전파와 피로수명평가)

  • Choi, Sung-Won;Kang, Dong-Hwan;Lee, Jong-Kwan;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1361-1368
    • /
    • 2011
  • Fatigue crack propagation behavior and the fatigue life in-high performance steel were investigated by means of fatigue crack propagation tests under constant loading conditions of 'R=0.1 and f=0.1 Hz', 'R=0.3 and f=0.3 Hz', and 'R=0.5 and f=0.5 Hz' for the load ratio and frequency, respectively. A modified Forman model was developed to describe the fatigue crack propagation behavior for the conditions. The modified Forman model is applicable to all fatigue crack propagation regions I, II, and III by implementing the threshold stress intensity factor range and the effective stress intensity factor range caused by crack closure. The results show that predicted fatigue lives of Forman and modified Forman models were 8,814 and 12,292 cycles, respectively when the crack propagated approximately 5.0 mm and the load ratio and frequency were both 0.1. Comparison of the test results indicates that the modified Forman model showed much more effective fatigue crack propagation behavior in high-performance steel.

A Modification in the Analysis of the Growth Rate of Short Fatigue Cracks in S45C Carbon Steel under Reversed Loading (반복하중조건 하에서의 S45C 탄소강에 대한 미소피로균열 성장속도 해석의 수정)

  • McEvily,A.J.
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.96-105
    • /
    • 1995
  • A modified method for the analysis of short fatigue crack growth has been presented, and calculations based upon the modified method are compared with experimental results for S45C carbon steel. It is also shown that the modified method is in good agreement with experimental data. The proposed equation for the fatigue crack growth rates includes a material constant which relates the threshold level to the endurance limit, a correction for elastic-plastic behaviour and a means for dealing with the effects of crack closure. In this study one of the modifications is to substitute the Forman' s elastic expression of the stress intensity factor range into the geometrical factor The other is a consideration of the bending effect which is developed from the moment caused by the eccentric cross sectional geometry as the crack grows. Thus, this method is useful for residual life prediction of the mechanical structures as well as the welding structures.

  • PDF