• Title/Summary/Keyword: Coverage Simulation

Search Result 466, Processing Time 0.031 seconds

Low-Earth orbit satellite constellation for ADS-B based in-flight aircraft tracking

  • Nguyen, Thien H.;Tsafnat, Naomi;Cetin, Ediz;Osborne, Barnaby;Dixon, Thomas F.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.95-108
    • /
    • 2015
  • Automatic Dependent Surveillance Broadcast (ADS-B) is quickly being adopted by aviation safety authorities around the world as the standard for aircraft tracking. The technology provides the opportunity for live tracking of aircraft positions within range of an ADS-B receiver stations. Currently these receiver stations are bound by land and local infrastructural constraints. As such there is little to no coverage over oceans and poles, over which many commercial flights routinely travel. A low cost space based ADS-B receiving system is proposed as a constellation of small satellites. The possibility for a link between aircraft and satellite is dependent primarily on proximity. Calculating the likelihood of a link between two moving targets when considering with the non-periodic and non-uniform nature of actual aircraft flight-paths is non-trivial. This analysis of the link likelihood and the performance of the tracking ability of the satellite constellation has been carried out by a direct simulation of satellites and aircraft. Parameters defining the constellation (satellite numbers, orbit size and shape, orbit configuration) were varied between reasonable limits. The recent MH370 disappearance was simulated and potential tracking and coverage was analysed using an example constellation. The trend of more satellites at a higher altitude inclined at 60 degrees was found to be the optimal solution.

Uplink Sub-channel Allocation and Power Control Algorithm Using Ranging Information in High speed Portable Internet System (휴대인터넷 시스템의 레인징 정보를 이용한 상향링크 부채널 할당 및 전력제어 알고리즘)

  • Kim, Dae-Ho;Kim, Whan-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.729-736
    • /
    • 2005
  • In this paper, we introduce a new approach for the design of uplink sub-channel allocation and power control in the High-speed Portable Internet system that is based on OmMAnDD scheme. In OFDMA system, because the number of allocated sub-channel in mobile station varies from one to the whole sub-channel as in base station while mobile station's transmit power is lower than that of base station, full loading range(FLR) constraint occurs where whole sub-channel can be used and the conventional open-loop power control scheme can not be used beyond FLR. We propose a new scheme that limits the maximum sub-channel allocation number and uses power concentration gain(PCG) depending on location of mobile station, which is based on ranging in OfDMA system. Simulation results show that the proposed scheme extends the uplink coverage to the entire cell service coverage area, provides solutions for optimum utilization of radio resource and enables open-loop power control beyond FLR without extra hardware complexity.

Efficient Methods for Reducing Clock Cycles in VHDL Model Verification (VHDL 모델 검증의 효율적인 시간단축 방법)

  • Kim, Kang-Chul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.12
    • /
    • pp.39-45
    • /
    • 2003
  • Design verification of VHDL models is getting difficult and has become a critical and time-consuming process in hardware design. Recent]y the methods using Bayesian estimation and stopping rule have been introduced to verify behavioral models and to reduce clock cycles. This paper presents two strategies to reduce clock cycles when using stopping rule in a VHDL model verification. The first method is that a semi-random variable is defined and the data that stay in the range of semi-random variable are skipped when stopping rule is running. The second one is to keep the old values of parameters when phases of stopping rule are changed. 12 VHDL models are examined to observe the effectiveness of strategies, and the simulation results show that more than about 25% of clock cycles is reduced by using the two proposed strategies with 0.6% losses of branch coverage rate.

The Analysis on radio wave propagation of DGPS on Sea IT Land path for the design of 300kHz bands NDGPS (300kHz대의 NDGPS시스템 설계를 위한 해.육상경로 DGPS 전파의 전파특성 분석)

  • Kim, Kyung-Tae;Kim, Min-Jung;Jung, Ja-Yong;Ko, Kwang-Soob
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.15-21
    • /
    • 2002
  • Re Ministry of Maritime Affairs and Fisheries in Korea completed the installation of 8 maritime DGPS station mfd is to going install 3 additional Maritime DGPS station for the enhancement of dual coverage in Korean coasts until Oct. 2002. Moreover, Korean government decided to provide the NDGPS service over the whole Korean inland area, which will be schedule to complete until June. 2004. On this paper to evaluate the propagation characteristics of using maritime DGPS site as un element of NDGPS ann to evaluate the required number of additional NDGPS sites, the propagation characteristics of the radio waves of 300kHz bands on sea and land nth are studied With the result of study, the conceptional design of Korean NDGPS System is proposed, which consists of 5 NDGPS sites with modified antenna and tかee coverage monitoring sites.

Dynamic Task Scheduling for 3D Torus Multicomputer Systems (3차원 토러스 구조를 갖는 멀티컴퓨터에서의 동적 작업 스케줄링 알고리즘)

  • Choo, Hyun-Seung;Youn, Hee-Yong;Park, Gyung-Leen
    • The KIPS Transactions:PartA
    • /
    • v.8A no.3
    • /
    • pp.245-252
    • /
    • 2001
  • Multicomputer systems achieve high performance by utilizing a number of computing nodes. Multidimensional meshes have become popular as multicomputer architectures due to their simplicity and efficiency. In this paper we propose an efficient processor allocation scheme for 3D torus based on first-fit approach. The scheme minimizes the allocation time by effectively manipulating the 3D information an 2D information using CST (Coverage Status Table). Comprehensive computer simulation reveals that the allocation time of the proposed scheme is always smaller than the earlier scheme based on best-fit approach, while allowing comparable processor utilization. The difference gets more significant as the input load increases. To investigate the performance of the proposed scheme with different scheduling environment, non-FCFs scheduling policy along with the typical FCFS policy is also studied.

  • PDF

HeNB-Aided Virtual-Handover for Range Expansion in LTE Femtocell Networks

  • Tang, Hao;Hong, Peilin;Xue, Kaiping
    • Journal of Communications and Networks
    • /
    • v.15 no.3
    • /
    • pp.312-320
    • /
    • 2013
  • Home evolved Node-B (HeNB), also called a femtocell or a femto base station, is introduced to provide high data rate to indoor users. However, two main problems arise in femtocell networks: (1) Small coverage area of HeNB, which results in limited cell-splitting gain and ping-pong handover (HO) problems and (2) high inter-femtocell interference because HeNBs may be densely deployed in a small region. In this study, an efficient cooperation mechanism called an HeNB-aided virtual-HO (HaVHO) scheme is proposed to expand the coverage area of femtocells and to reduce inter-femtocell interference. The cooperation among neighbor HeNBs is exploited in HaVHO by enabling an HeNB to relay the data of its neighbor HeNB without an HO. The HaVHO procedure is compatible with the existing long term evolution specification, and the information exchange overhead in HaVHO is relatively low. To estimate the signal to interference plus noise ratio improvement, the area average channel state metric is proposed, and the amount of user throughput enhancement by HaVHO is derived. System-level simulation shows that HaVHO has a better performance than the other four schemes, such as lesser radio link failure, lesser ping-pong handover, lesser short-stay handover, and higher user throughput.

An Improved Coverage Efficient Clustering Method based on Time Delay for Wireless Sensor Networks (무선 센서 네트워크에서 시간지연 기반 향상된 커버리지 효율적인 클러스터링 방안)

  • Gong, Ji;Kim, Kwang-Ho;Go, Kwang-Sub;Cho, Gi-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.2
    • /
    • pp.1-10
    • /
    • 2009
  • Energy efficient operations are essential to increase the life time of wireless sensor network. A cluster-based protocol is the most common approach to preserve energy during a data aggregation. This paper deals with an energy awareness and autonomous clustering method based on time delay. This method consists of three stages. In the first phase, Candidate Cluster Headers(CCHs) are selected based on a time delay which reflects the remaining energy of a node, with considering coverage efficiency of a cluster. Then, time delay is again applied to declare Cluster Headers(CHs) out of the CCHs. In the last phase, the issue on an orphan node which is not included into a cluster is resolved. The simulation results show that the proposed method increases the life time of the network around triple times longer than LEACH(Low Energy Adaptive Cluster Hierarchy). Moreover, the cluster header frequency is less diverse, and the energy on cluster heads is less spent.

An Adaptive Control of Individual Channels' Transmission Power in Femtocells (펨토셀 환경에서 채널별 전송전력의 적응적 제어 기법)

  • Lee, Hoseog;Cho, Ho-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.9
    • /
    • pp.762-771
    • /
    • 2012
  • In this paper, we propose an adaptive power control scheme employing a self-optimization concept in femtocell systems, in order to improve system capacity, thereby reducing call-drop probability. In the proposed scheme, each femto base station(FBS) controls individual channel's transmission power base on two parameters; the neighboring cell's transmission power for each individual channel which is delivered from a femto-gateway and the received power strength from neighboring cells which is periodically measured by means of a spectrum sensing. Adaptive adjustment of individual channel's transmission power in accordance with femto mobile station(FMS) mobility features can also reduce undesirable handovers and evenly distribute traffic load over all femtocells. In addition, the manipulative control of channel's transmission power is able to keep the system coverage and the call-drop probability within an acceptable range, regardless of density of femtocells. Computer simulation shows that the proposed scheme outperforms existing schemes in terms of the system coverage and the call-drop probability.

A Self-Deployment Scheme Using Improved Potential Field in Mobile Sensor Networks (이동 센서 네트워크에서 개선된 포텐셜 필드를 사용한 자율 배치 방법)

  • Lee, Heon-Jong;Kim, Yong-Hwan;Han, Youn-Hee;Jeong, Young-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1B
    • /
    • pp.106-116
    • /
    • 2010
  • Sensor deployment makes an effect on not only covering of the interesting area but also reliable data acquisition and efficient resource management of sensor, so that sensors must be deployed at their better place. In traditional static wireless sensor networks, however, it is impossible to deploy the sensors manually when they are distributed in unexploited, hostile, or disaster areas. Therefore, if each sensor has locomotion capability, it can re-deploy itself using the location information of neighbor sensors. In our previous study, we showed that moving sensors to the centroids of their Voronoi polygon is efficient for extending the coverage area. In this paper, we present an improved potential-field-based sensor self-deployment scheme by combining the centroid of Voronoi polygon with the traditional potential-field scheme. Simulation results show that our scheme can achieve higher coverage in shorter time and less movement than the traditional potential-field scheme.

Multi-Hop Clock Synchronization Based on Robust Reference Node Selection for Ship Ad-Hoc Network

  • Su, Xin;Hui, Bing;Chang, KyungHi
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.65-74
    • /
    • 2016
  • Ship ad-hoc network (SANET) extends the coverage of the maritime communication among ships with the reduced cost. To fulfill the growing demands of real-time services, the SANET requires an efficient clock time synchronization algorithm which has not been carefully investigated under the ad-hoc maritime environment. This is mainly because the conventional algorithms only suggest to decrease the beacon collision probability that diminishes the clock drift among the units. However, the SANET is a very large-scale network in terms of geographic scope, e.g., with 100 km coverage. The key factor to affect the synchronization performance is the signal propagation delay, which has not being carefully considered in the existing algorithms. Therefore, it requires a robust multi-hop synchronization algorithm to support the communication among hundreds of the ships under the maritime environment. The proposed algorithm has to face and overcome several challenges, i.e., physical clock, e.g., coordinated universal time (UTC)/global positioning system (GPS) unavailable due to the atrocious weather, network link stability, and large propagation delay in the SANET. In this paper, we propose a logical clock synchronization algorithm with multi-hop function for the SANET, namely multi-hop clock synchronization for SANET (MCSS). It works in an ad-hoc manner in case of no UTC/GPS being available, and the multi-hop function makes sure the link stability of the network. For the proposed MCSS, the synchronization time reference nodes (STRNs) are efficiently selected by considering the propagation delay, and the beacon collision can be decreased by the combination of adaptive timing synchronization procedure (ATSP) with the proposed STRN selection procedure. Based on the simulation results, we finalize the multi-hop frame structure of the SANET by considering the clock synchronization, where the physical layer parameters are contrived to meet the requirements of target applications.