• Title/Summary/Keyword: Cover depth

Search Result 425, Processing Time 0.041 seconds

Assessment of Accuracy for the Rebar Detecting Device at Reconstruction Site (재건축현장 철근탐사 검사장비의 정확도 평가)

  • Park Sung-Mo;Rhim Hong-Chul;Rhim Byung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.163-166
    • /
    • 2006
  • The purpose of the research is to assess the accuracy of steel bar detector among other nondestructive testing equipment. The result of previous research shows that the average errors of rebar detector are 14.7% for the cover depth, 2.3% for the rebar spacing, and 11% for the rebar diameter. But this experiment was performed at the laboratory and the mortar was used for covering the steel bars instead of concrete. In situ condition can be different from the laboratory's so the outcomes do not correspond with those of laboratory. This research was performed at the buildings to be reconstructed. Nondestructive and destructive testing can be performed side by side since the building if to be destroyed. Steel bar detector was operated on the beam and the column and concrete cover of those members was removed for the actual measurement of rebar depth, spacing, and diameter finally, presumed value can be directly compared with actual data.

  • PDF

View Synthesis and Coding of Multi-view Data in Arbitrary Camera Arrangements Using Multiple Layered Depth Images

  • Yoon, Seung-Uk;Ho, Yo-Sung
    • Journal of Multimedia Information System
    • /
    • v.1 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • In this paper, we propose a new view synthesis technique for coding of multi-view color and depth data in arbitrary camera arrangements. We treat each camera position as a 3-D point in world coordinates and build clusters of those vertices. Color and depth data within a cluster are gathered into one camera position using a hierarchical representation based on the concept of layered depth image (LDI). Since one camera can cover only a limited viewing range, we set multiple reference cameras so that multiple LDIs are generated to cover the whole viewing range. Therefore, we can enhance the visual quality of the reconstructed views from multiple LDIs comparing with that from a single LDI. From experimental results, the proposed scheme shows better coding performance under arbitrary camera configurations in terms of PSNR and subjective visual quality.

  • PDF

Variation of Half Cell Potential Measurement in Concrete with Different Properties and Anti-Corrosive Condition (콘크리트 특성에 따른 반전위 측정값의 변화와 부식제어 조건)

  • Kim, Ki-Bum;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.95-103
    • /
    • 2013
  • Half Cell Potential (HPC) technique has been widely adopted for its quantitative evaluation of corrosion possibility. In this study, RC specimens with three different cover depths (10mm, 30mm, and 60mm) and w/c ratios (0.35, 0.55, and 0.70) are prepared and accelerated salt spray test (SST) is performed for 45 days. Steel corrosion occurs in the specimens with 0.55 of w/c and 10mm of cover depth. In the case of 0.70 of w/c and 30mm of cover depth, steel corrosion is also monitored. Considering the effect of cover depth and w/c ratio, HCP evaluation equation is proposed and the condition which can control steel corrosion is obtained. Furthermore, anti-corrosive conditions containing w/c ratio and cover depth are analyzed through Life 365 program and the conditions are compared with the results from this study.

The Behavior of Corrugated Steel Pipes on Underground Structures According to the Depth of Cover (파형 강관 지중구조물의 토피고에 따른 거동특성)

  • Yook, Jeong-Hoon;Kim, Nag-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.1
    • /
    • pp.65-73
    • /
    • 2004
  • The analysis of corrugated steel pipes is depending on a second dimension frame analysis or compressed ring model. This is the analysis not to consider the behavior of soil-structure interaction. The behavior of load resistance system is varied according to the depth of cover and the spacing of corrugated steel pipes structure. Therefore, the behavior characteristic of corrugated steel pipes was confirmed through finite element analysis to consider the activity of soil-structure interaction. If soil cover is filled up to the more of optimal depth, behavior of corrugated steel pipes are similar to those of ductile steel pipes according to the earth pressure distribution and effects of traffic loads are decreased. But, If soil cover is filled up to the less of optimal depth, corrugated steel pipes can't behave completely as ductile steel pipes because the passive earth pressure acting on side of corrugated steel pipes is decreased according to the decrement of vertical earth pressure, and the traffic loads influence on the section forces is increased, so that the traffic loads dominated the behavior of corrugated steel pipes.

  • PDF

Evaluation of Minimum Depth Criterion and Reinforcement Effect of the Soil Cover in a Long-span Soil-steel Bridge (장지간 지중강판구조물의 최소토피고 평가 및 토피지반 보강에 대한 수치해석)

  • 이종구;조성민;정현식;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.67-78
    • /
    • 2004
  • Soil-steel bridges are made of flexible corrugated steel plates buried in the well-compacted granular soil. One kind of possible collapses of these structures could be initiated by shear or tension failure in the soil cover subjected to vehicle loads. Current design codes provide the requirements for the minimum depth of the soil cover to avoid problems associated with soil cover failures. However, these requirements were developed for short span (less than 7.7 m) structures which are made of unstiffened plates of standard corrugation (150$\times$50 m). Numerical analyses were carried out to investigate the behavior of long span soil steel bridges according to thickness of the soil cover. The span of structures were up to 20 m and deep corrugated plates (381$\times$140 m) were used. The analysis showed that the minimum cover depth of 1.5 m could be sufficient to prevent the soil cover failure in the structures with a span exceeding 10 m. Additional analyses were performed to verify the reinforcement effect of the concrete relieving slab which can be a special feature to reduce the live-load effects. Analyses revealed that the bending moment of the conduit wall with a relieving slab was less than 20% of that without a relieving slab in a case of shallow soil cover conditions.

Deformation of Corrugated Steel Plate Culverts in the Areas with Minimum Depth (최소토피고 미확보 구간에 시공한 파형강판 암거의 변형 특성)

  • Kim, Myoungil;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.7
    • /
    • pp.23-30
    • /
    • 2014
  • This paper deals with the characteristics of deformation of the underground corrugated steel plate culverts constructed in the areas where the minimum depth of within 1.5 m soil cover is not secured in the bottom of highways. The underground corrugated steel plate culverts at shallow depth are often designed and constructed with the consideration of the minimum depth of soil cover according to the design standards, which was made in order to minimize any deformation. Additionally, if under unfavorable conditions, slabs are set up for stress relaxation to disperse and minimize the weight of loads transferred to the corrugated steel plate culverts. Nevertheless, if the underground corrugated steel plate culverts are built in areas where the minimum depth of soil cover inevitably cannot be secured, there may occur some deformation. In this paper, a research was carried out to identify the characteristics of deformation in areas where the minimum depth of soil cover is not secured. The result shows that there existed the deterioration of pavement and in its smoothness around the corners of slabs for stress relaxation. To this end, this paper studied the structural stability of the underground corrugated steel plate culverts established in the areas with no minimum depth of soil cover secured, with the consideration of causes and solutions of pavement deterioration.

Evaluation of Impact Resistance for Concrete Median Barrier Depending on Vehicle Curb Weight, Concrete Cover Depth and Level of Deterioration (트럭 공차중량, 중앙분리대 피복두께 및 열화수준에 따른 중앙분리대 충돌해석모델의 민감도 분석)

  • Lee, Jaeha;Lee, Ilkeun;Jeong, Yoseok;Kim, Kyeongjin;Kim, WooSeok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.297-306
    • /
    • 2017
  • The concrete median barrier used currently in South Korea was developed the impact level of SB5-B(270kJ). However, the impact level of SB6(420kJ) should be considered in many placed with the increased accident of heavy vehicles. In order to increase the impact resistance of newly developed concrete median barrier, the computer simulation was conducted before real field test. For the accurate behavior of concrete, the parameter, such as impact vehicle, concrete cover depth and deterioration, was important. In this paper, a parametric study was conducted depending on vehicle curb weight, concrete cover depth and level of deterioration. The impact resistance of concrete median barrier was severely changed depending on vehicle curb weight and concrete cover depth. Furthermore, the impact resistance of concrete median barrier was also decreased due to deterioration of concrete, therefore the repair and rehabilitation should be conducted for damaged concrete depending on deterioration level. Therefore, vehicle curb weight, cover depth of concrete structures and deterioration level of concrete should be carefully considered for conducting analysis of concrete structure to vehicle collision.

Characteristics of OCP of Reinforced Concrete Using Socket-type Electrodes during Periodic Salt Damage Test (주기적 염해 시험에 따른 소켓 타입 전극을 활용한 철근 콘크리트의 OCP 특성)

  • Lee, Sang-Seok;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.28-36
    • /
    • 2021
  • It is known that buried rebars inside concrete structures are protected from corrosion due to passive layer. It is very important to delay the timing of corrosion or evaluate a detection of corrosion initiation for the purpose of cost-beneficiary service life of a structure. In this study, corrosion monitoring was performed on concrete specimens considering 3 levels of cover depth(60 mm, 45 mm, and 30 mm), W/C(water to cement) ratio(40.0%, 50.0%, and 60.0%) and chloride concentration(0.0%, 3.5%, and 7.0%). OCP(Open Circuit Potential) was measured using agar-based socket type sensors. The OCP measurement showed the consistent behavior where the potential was reduced in wet conditions and it was partially recovered in dry conditions. In the case of 30 mm of cover depth for most W/C ratio cases, the lowest OCP value was measured and rapid OCP recovery was evaluated in increasing cover depth from 30 mm to 45 mm, since cover depth was an effective protection against chloride ion ingress. As the chloride concentration increased, the effect on the cover depth tended to be more dominant than the that of W/C ratio. After additional monitoring and physical evaluation of chloride concentration after specimen dismantling, the proposed system can be improved with increasing reliability of the corrosion monitoring.

Corrosion Behavior and Ultrasonic Velocity in RC Beams with Various Cover Depth (다양한 피복두께를 가진 RC 보의 부식 거동 및 초음파 속도)

  • Jin-Won Nam;Hyun-Min Yang;Seung-Jun Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.184-191
    • /
    • 2023
  • With increasing corrosion in RC (Reinforced Concrete) structures, cracks occurred due to corrosion products and bearing load resistance decreased. In this study, corrosion was induced through an accelerated corrosion test (ICM: Impressed Current Method) with 140 hours of duration, and changes in USV (Ultra-Sonic Velocity), flexural failure load, and corrosion weight were evaluated before and after corrosion test. Three levels of cover depth (20 mm, 30 mm, and 40 mm) were considered, and the initial cracking period increased and the rust around steel decreased with increasing cover depth. In addition, the USV linearly decreased with decreasing cover depth and increasing amount of corrosion. In the flexural loading test, the bending capacity decreased by more than 10% due to corrosion, but a clear correlation could not be obtained since the corrosion ratio was small, so that the effect of slip was greater than that of reduced cross-sectional area of steel due to corrosion. As cover depth increased, the produced corrosion amount and USV changed with a clear linear relationship, and the cracking period due to corrosion could be estimated by the gradient of the measured corrosion current.

A study on behavior characteristics of liner plate with depth (토피고 변화에 따른 Liner Plate 거동특성에 관한 연구)

  • Jeong, Ji-Su;Ji, Young-Hwan;Cho, Hyun;Hur, In-Young;Lee, Seung-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.2
    • /
    • pp.131-139
    • /
    • 2012
  • In this study, the numerical analysis has been conducted in order to check behavior characteristics of liner plate made of corrugated steel from urban small sized tunnel excavation. The analysis was conducted with five kinds of conditions like 5 m, 10 m, 15 m, 20 m and 25 m to examine the behavior characteristics of liner plate according to the depth of cover. Analysis results showed that the maximum axial stress and the maximum displacement occurs in the lower end of the member, and the maximum shear stress occurs in the upper part of the member. Also, change of displacement, stress shearing stress of liner plate based on various depth of cover are existed, but the difference is slight, and by increasing depth of cover, structural stability is gradually ensured.