• Title/Summary/Keyword: Cover Image

Search Result 717, Processing Time 0.019 seconds

Steganalysis Using Histogram Characteristic and Statistical Moments of Wavelet Subbands (웨이블릿 부대역의 히스토그램 특성과 통계적 모멘트를 이용한 스테그분석)

  • Hyun, Seung-Hwa;Park, Tae-Hee;Kim, Young-In;Kim, Yoo-Shin;Eom, Il-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.57-65
    • /
    • 2010
  • In this paper, we present a universal steganalysis scheme. The proposed method extract features of two types. First feature set is extracted from histogram characteristic of the wavelet subbands. Second feature set is determined by statistical moments of wavelet characteristic functions. 3-level wavelet decomposition is performed for stego image and cover image using the Haar wavelet basis. We extract one features from 9 high frequency subbands of 12 subbands. The number of second features is 39. We use total 48 features for steganalysis. Multi layer perceptron(MLP) is applied as classifier to distinguish between cover images and stego images. To evaluate the proposed steganalysis method, we use the CorelDraw image database. We test the performance of our proposed steganalysis method over LSB method, spread spectrum data hiding method, blind spread spectrum data hiding method and F5 data hiding method. The proposed method outperforms the previous methods in sensitivity, specificity, error rate and area under ROC curve, etc.

Deep Learning-based Hyperspectral Image Classification with Application to Environmental Geographic Information Systems (딥러닝 기반의 초분광영상 분류를 사용한 환경공간정보시스템 활용)

  • Song, Ahram;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1061-1073
    • /
    • 2017
  • In this study, images were classified using convolutional neural network (CNN) - a deep learning technique - to investigate the feasibility of information production through a combination of artificial intelligence and spatial data. CNN determines kernel attributes based on a classification criterion and extracts information from feature maps to classify each pixel. In this study, a CNN network was constructed to classify materials with similar spectral characteristics and attribute information; this is difficult to achieve by conventional image processing techniques. A Compact Airborne Spectrographic Imager(CASI) and an Airborne Imaging Spectrometer for Application (AISA) were used on the following three study sites to test this method: Site 1, Site 2, and Site 3. Site 1 and Site 2 were agricultural lands covered in various crops,such as potato, onion, and rice. Site 3 included different buildings,such as single and joint residential facilities. Results indicated that the classification of crop species at Site 1 and Site 2 using this method yielded accuracies of 96% and 99%, respectively. At Site 3, the designation of buildings according to their purpose yielded an accuracy of 96%. Using a combination of existing land cover maps and spatial data, we propose a thematic environmental map that provides seasonal crop types and facilitates the creation of a land cover map.

An Experiment for Surface Soil Moisture Mapping Using Sentinel-1 and Sentinel-2 Image on Google Earth Engine (Google Earth Engine 제공 Sentinel-1과 Sentinel-2 영상을 이용한 지표 토양수분도 제작 실험)

  • Jihyun Lee ;Kwangseob Kim;Kiwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.599-608
    • /
    • 2023
  • The increasing interest in soil moisture data using satellite data for applications of hydrology, meteorology, and agriculture has led to the development of methods for generating soil moisture maps of variable resolution. This study demonstrated the capability of generating soil moisture maps using Sentinel-1 and Sentinel-2 data provided by Google Earth Engine (GEE). The soil moisture map was derived using synthetic aperture radar (SAR) image and optical image. SAR data provided by the Sentinel-1 analysis ready data in GEE was applied with normalized difference vegetation index (NDVI) based on Sentinel-2 and Environmental Systems Research Institute (ESRI)-based Land Cover map. This study produced a soil moisture map in the research area of Victoria, Australia and compared it with field measurements obtained from a previous study. As for the validation of the applied method's result accuracy, the comparative experimental results showed a meaningful range of consistency as 4-10%p between the values obtained using the algorithm applied in this study and the field-based ones, and they also showed very high consistency with satellite-based soil moisture data as 0.5-2%p. Therefore, public open data provided by GEE and the algorithm applied in this study can be used for high-resolution soil moisture mapping to represent regional land surface characteristics.

Comparison of Landcover Map Accuracy Using High Resolution Satellite Imagery (고해상도 위성영상의 토지피복분류와 정확도 비교 연구)

  • Oh, Che-Young;Park, So-Young;Kim, Hyung-Seok;Lee, Yanng-Won;Choi, Chul-Uong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.1
    • /
    • pp.89-100
    • /
    • 2010
  • The aim of this study is to produce land cover maps using satellite imagery with various degrees of high resolution and then compare the accuracy of the image types and categories. For the land cover map produced on a small-scale classification the estuary area around the Nakdong river, including an urban area, farming land and waters, was selected. The images were classified by analyzing the aerial photos taken from KOMPSAT2, Quickbird and IKONOS satellites, which all have a resolution of over 1m to the naked eye. Once all of the land cover maps with different images and land cover categories had been produced they were compared to each other. Results show that image accuracy from the aerial photos and Quickbird was relatively higher than with KOMPSAT2 and IKONOS. The agreement ratio for the large-scale classification across the classification methods ranged between 0.934 and 0.956 for most cases. The Kappa value ranged between 0.905 and 0.937; the agreement ratio for the middle-scale classification was 0.888~0.913 and the Kappa value was 0.872~0.901. The agreement ratio for the small-scale classification was 0.833~0.901 and the Kappa value was 0.813~0.888. In addition, in terms of the degree of confusion occurrence across the images, there was confusion on the urbanized arid areas and empty land in the large-scale classification. For the middle-scale classification, the confusion mainly occurred on the rice paddies, fields, house cultivating area and artificial grassland. For the small-scale classification, confusion mainly occurred on natural green fields, cultivating land with facilities, tideland and the surface of the sea. The findings of this study indicate that the classification of the high resolution images with the naked eye showed an agreement ratio of over 80%, which means that it can be used in practice. The findings also suggest that the use of higher resolution images can lead to increased accuracy in classification, indicating that the time when the images are taken is important in producing land cover maps.

The study on the script prayed by Ik-An prince(益安大君) in early Choseon Dynasty (조선초(朝鮮初) 익안대군발원사경(益安大君發願寫經)에 관한 연구(硏究))

  • Kyon, Hee-Kyung
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.1 no.2
    • /
    • pp.159-183
    • /
    • 2001
  • The praying sentences of the script of Saddharmapundarika-sutra NO.5 which was made by prayer Bang-Ui, prince Ik-An, was investigated and the cover painting, Byonsangwha(Buddha's preaching painting), and letter style written in the script were discussed in this study. The cover painting on the script is known to be followed to the style of the cover painting as shown in a set of 7 rolls of Saddharma pundarika-sutra of the Horim Museum collection. It is not so difficult to say that the characteristics of cover painting of the script would be suceeded to those of scripts of the end of Koryo and the early Choseon Dynasty. Lotus and its surround was decorated with arabesque figure whose stems were drawn with golden paste and the arabesque figures were done with silver paste. However, for the expression of lotus and arabesque pattern the special feature of drawing style that was originated from the end of Koryo Dynasty to draw the outline with broad line and/or the hardness of drawing line became much more deepened than ever. It is not different to think that this characteristics should be those of Choseon Dynasty. On the Byeonsangwha(buddha's preaching painting) the painting of scattered flowers on stairs of Sumera-Mandala and the scheduled clouds (underseen from heaven) were as similar as to the Byeonsangwha style of the end of Koryo and the early Choseon Dynasty. However, the image of Shakyamuni and/or the halo(光背) is nearly same as the characteristics shown on the Beonsangwha of Saddharma pundarika-sutra of Nesosa' collection, a set of seven rolls which was completed in the 15th year of king Taejong(AD 1415). It is apparent that these characteristics are those of Choseon Dynasty. After king Chungsean in Koryo Dynasty, letter style of Chao Meng-Fu was shown in the script of late Koryo Dynasty as a new letter style.

Feature Extraction and Classification of Multi-temporal SAR Data Using 3D Wavelet Transform (3차원 웨이블렛 변환을 이용한 다중시기 SAR 영상의 특징 추출 및 분류)

  • Yoo, Hee Young;Park, No-Wook;Hong, Sukyoung;Lee, Kyungdo;Kim, Yihyun
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.569-579
    • /
    • 2013
  • In this study, land-cover classification was implemented using features extracted from multi-temporal SAR data through 3D wavelet transform and the applicability of the 3D wavelet transform as a feature extraction approach was evaluated. The feature extraction stage based on 3D wavelet transform was first carried out before the classification and the extracted features were used as input for land-cover classification. For a comparison purpose, original image data without the feature extraction stage and Principal Component Analysis (PCA) based features were also classified. Multi-temporal Radarsat-1 data acquired at Dangjin, Korea was used for this experiment and five land-cover classes including paddy fields, dry fields, forest, water, and built up areas were considered for classification. According to the discrimination capability analysis, the characteristics of dry field and forest were similar, so it was very difficult to distinguish these two classes. When using wavelet-based features, classification accuracy was generally improved except built-up class. Especially the improvement of accuracy for dry field and forest classes was achieved. This improvement may be attributed to the wavelet transform procedure decomposing multi-temporal data not only temporally but also spatially. This experiment result shows that 3D wavelet transform would be an effective tool for feature extraction from multi-temporal data although this procedure should be tested to other sensors or other areas through extensive experiments.

Analysis on the Changes of Remote Sensing Indices on Each Land Cover Before and After Heavy Rainfall Using Multi-temporal Sentinel-2 Satellite Imagery and Daily Precipitation Data (다중시기 Sentinel-2 위성영상과 일강수량 자료를 활용한 집중호우 전후의 토지피복별 원격탐사지수 변화 분석)

  • KIM, Kyoung-Seop;MOON, Gab-Su;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.2
    • /
    • pp.70-82
    • /
    • 2020
  • Recently, a lot of damages have been caused by urban flooding, and heavy rainfall that temporarily occur are the main causes of these phenomenons. The damages caused by urban flooding are identified as the change in the water balance in urban areas. To indirectly identify it, this research analyzed the change in the remote sensing indices on each land cover before and after heavy rainfall by utilizing daily precipitation data and multi-temporal Sentinel-2 satellite imagery. Cases of heavy rain advisory and warning were selected based on the daily precipitation data. And statistical fluctuation were compared by acquiring Sentinel-2 satellite images during the corresponding period and producing them as NDVI, NDWI and NDMI images about each land cover with a radius of 1,000 m based on the Seoul Weather Station. As a result of analyzing the maximum value, minimum value, mean and fluctuation of the pixels that were calculated in each remote sensing index image, there was no significant changes in the remote sensing indices in urban areas before and after heavy rainfall.

Region of Interest (ROI) Selection of Land Cover Using SVM Cross Validation (SVM 교차검증을 활용한 토지피복 ROI 선정)

  • Jeong, Jong-Chul;Youn, Hyoung-Jin
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.1
    • /
    • pp.75-85
    • /
    • 2020
  • This study examines machine learning cross-validation to utilized create ROI for classification of land cover. The study area located in Sejong and one KOMPSAT-3A image was used in this analysis: procedure on October 28, 2019. We used four bands(Red, Green, Blue, Near infra-red) for learning cross validation process. In this study, we used K-fold method in cross validation and used SVM kernel type with cross validation result. In addition, we used 4 kernels of SVM(Linear, Polynomial, RBF, Sigmoid) for supervised classification land cover map using extracted ROI. During the cross validation process, 1,813 data extracted from 3,500 data, and the most of the building, road and grass class data were removed about 60% during cross validation process. Based on this, the supervised SVM linear technique showed the highest classification accuracy of 91.77% compared to other kernel methods. The grass' producer accuracy showed 79.43% and identified a large mis-classification in forests. Depending on the results of the study, extraction ROI using cross validation may be effective in forest, water and agriculture areas, but it is deemed necessary to improve the distinction of built-up, grass and bare-soil area.

Analysis of the Surface Urban Heat Island Changes according to Urbanization in Sejong City Using Landsat Imagery (Landsat영상을 이용한 토지피복 변화에 따른 행정중심복합도시의 표면 열섬현상 변화분석)

  • Lee, Kyungil;Lim, Chul-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.225-236
    • /
    • 2022
  • Urbanization due to population growth and regional development can cause various environmental problems, such as the urban heat island phenomenon. A planned city is considered an appropriate study site to analyze changes in urban climate caused by rapid urbanization in a short-term period. In this study, changes in land cover and surface heat island phenomenon were analyzed according to the development plan in Sejong City from 2013 to 2020 using Landsat-8 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) satellite imagery. The surface temperature was calculated in consideration of the thermal infrared band value provided by the satellite image and the emissivity, and based on this the surface heat island effect intensity and Urban Thermal Field Variance Index (UTFVI) change analysis were performed. The level-2 land cover map provided by the Ministry of Environment was used to confirm the change in land cover as the development progressed and the difference in the surface heat island intensity by each land cover. As a result of the analysis, it was confirmed that the urbanized area increased by 15% and the vegetation decreased by more than 28%. Expansion and intensification of the heat island phenomenon due to urban development were observed, and it was confirmed that the ecological level of the area where the heat island phenomenon occurred was very low. Therefore, It can suggest the need for a policy to improve the residential environment according to the quantitative change of the thermal environment due to rapid urbanization.

A Comparative Study of Wetland Change Detection Techniques Using Post-Classification Comparison and Image Differencing on Landsat-5 TM Data (랜�V-5호(號) TM 데이타를 이용(利用)한 구분후(區分后) 비교(比較) 및 영상대차(映像對差)의 습지대(濕地帶) 변화(變化) 탐지(探知) 기법(技法)에 관(關)한 비교연구(比較硏究))

  • Choung, Song Hak;Ulliman, Joseph J.
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.4
    • /
    • pp.346-356
    • /
    • 1992
  • The extensive Snake River floodplain in Northwest United States has experienced major changes in water channels and vegetation types due to floodings. To detect the change of wetland cover-types for the period of 1985 and 1988, post-classification comparison and image differencing change detection techniques were evaluated using Landsat-5 TM digital data. Differenced infrared-band images indicated better accuracy indices than any visible-band images. A thresholding technique was applied to identify the change and no change categories from the transformed images produced by image differencing. The problems in using different accuracy indices, including the Kappa coefficient of agreement, overall accuracy, producer's accuracy, user's accuracy, and average accuracy(based on both the producer's and user's accuracy approaches) in determining an optimal threshold level, were examined.

  • PDF