• 제목/요약/키워드: Covariance Data

검색결과 838건 처리시간 0.026초

일반 선형 모형에 대한 공분산 행렬의 비교 (Comparison of the covariance matrix for general linear model)

  • 남상아;이근백
    • 응용통계연구
    • /
    • 제30권1호
    • /
    • pp.103-117
    • /
    • 2017
  • 경시적 자료분석에서 공변량 효과를 추정할 때 반복 측정된 결과들의 상관성은 고려되어야 한다. 따라서 공분산 행렬을 모형화하는 것은 매우 중요하다. 그러나 공분산 행렬의 추정은 모수들의 수가 많고 추정된 공분산행렬이 양정치성을 만족해야 하므로 쉽지 않은 문제이다. 이러한 제한을 극복하기 위해, 공분산행렬의 모형화를 위한 여러가지 방법을 제안하였다: 자기회귀/이동평균/자기회귀-이동평균 구조를 각각 적용한 수정 콜레스키분해 (Pourahmadi, 1999), 이동평균 콜레스키분해 (Zhang과 Leng, 2012)와 자기회귀-이동평균 콜레스키 분해 (Lee 등, 2017) 이들 구조를 가지는 공분산 행렬의 특징을 비교연구하고자 한다. 이 세 가지 모형의 성능을 비교하기 위한 모의실험을 실시한다.

Comparison of covariance thresholding methods in gene set analysis

  • Park, Sora;Kim, Kipoong;Sun, Hokeun
    • Communications for Statistical Applications and Methods
    • /
    • 제29권5호
    • /
    • pp.591-601
    • /
    • 2022
  • In gene set analysis with microarray expression data, a group of genes such as a gene regulatory pathway and a signaling pathway is often tested if there exists either differentially expressed (DE) or differentially co-expressed (DC) genes between two biological conditions. Recently, a statistical test based on covariance estimation have been proposed in order to identify DC genes. In particular, covariance regularization by hard thresholding indeed improved the power of the test when the proportion of DC genes within a biological pathway is relatively small. In this article, we compare covariance thresholding methods using four different regularization penalties such as lasso, hard, smoothly clipped absolute deviation (SCAD), and minimax concave plus (MCP) penalties. In our extensive simulation studies, we found that both SCAD and MCP thresholding methods can outperform the hard thresholding method when the proportion of DC genes is extremely small and the number of genes in a biological pathway is much greater than a sample size. We also applied four thresholding methods to 3 different microarray gene expression data sets related with mutant p53 transcriptional activity, and epithelium and stroma breast cancer to compare genetic pathways identified by each method.

RESONANCE SELF-SHIELDING EFFECT IN UNCERTAINTY QUANTIFICATION OF FISSION REACTOR NEUTRONICS PARAMETERS

  • Chiba, Go;Tsuji, Masashi;Narabayashi, Tadashi
    • Nuclear Engineering and Technology
    • /
    • 제46권3호
    • /
    • pp.281-290
    • /
    • 2014
  • In order to properly quantify fission reactor neutronics parameter uncertainties, we have to use covariance data and sensitivity profiles consistently. In the present paper, we establish two consistent methodologies for uncertainty quantification: a self-shielded cross section-based consistent methodology and an infinitely-diluted cross section-based consistent methodology. With these methodologies and the covariance data of uranium-238 nuclear data given in JENDL-3.3, we quantify uncertainties of infinite neutron multiplication factors of light water reactor and fast reactor fuel cells. While an inconsistent methodology gives results which depend on the energy group structure of neutron flux and neutron-nuclide reaction cross section representation, both the consistent methodologies give fair results with no such dependences.

데이터 기초의 공분산 행렬로 구성된 EV 방법으로부터 다중 정현파의 주파수 추정에 관한 통계적 분석 (Statistical Analysis on Frequency Estimation of Multiple Sinusoids from EV with a Data based Covariance Matrix)

  • 안태천;탁현수;최병윤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 A
    • /
    • pp.453-456
    • /
    • 1992
  • A Data-based Covariance Matrix(DCM) is introduced in the Eigenvector(EV) method, among subspace methods of estimating multiple sinusoidal frequencies from finite white noisy measurements. It is shown that the EV with the DCM can obtain the true. frequencies from finite noiseless data Some asymptotic results and further improvement on the DCM are also presented mathematically. Monte-carlo simulations are statistically conducted from the view-points of means and standard deviations in the EV's of DCM and Conventional Covariance Matrix(CCM). Simulations show a great promise for using the DCM, particularly for the cases of short data records, closely spaced frequencies and high signal-to-noise ratios.

  • PDF

칼만필터의 자료동화 활용을 위한 배경오차 공분산의 명시적 시간 진전 제거 (An Affordable Implementation of Kalman Filter by Eliminating the Explicit Temporal Evolution of the Background Error Covariance Matrix)

  • 임규호;서애숙;하지현
    • 대기
    • /
    • 제23권1호
    • /
    • pp.33-37
    • /
    • 2013
  • In meteorology, exploitation of Kalman filter as a data assimilation system is virtually impossible due to simultaneous requirements of adjoint model and large computer resource. The other substitute of utilizing ensemble Kalman filter is only affordable by compensating an enormous usage of computing resource. Furthermore, the latter employs ensemble integration sets for evolving the background error covariance matrix by compensating the dynamical feature of the temporal evolution of weather conditions. We propose a new implementation method that works without the adjoint model by utilizing the explicit expression of the background error covariance matrix in backward evolution. It will also break a barrier in the evolution of the covariance matrix. The method may be applied with a slight modification to the real time assimilation or the retrospective analysis.

로버스트 추정에 근거한 수정된 다변량 $T^2$- 관리도 (Modified Multivariate $T^2$-Chart based on Robust Estimation)

  • 성웅현;박동련
    • 품질경영학회지
    • /
    • 제29권1호
    • /
    • pp.1-10
    • /
    • 2001
  • We consider the problem of detecting special variations in multivariate $T^2$-control chart when two or more multivariate outliers are present. Since a multivariate outlier may reflect slippage in mean, variance, or correlation, it can distort the sample mean vector and sample covariance matrix. Damaged sample mean vector and sample covariance matrix have difficulty in examining special variations clearly, An alternative to detection outliers or special variations is to use robust estimators of mean vector and covariance matrix that are less sensitive to extreme observations than are the standard estimators $\bar{x}$ and $\textbf{S}$. We applied popular minimum volume ellipsoid(MVE) and minimum covariance determinant(MCD) method to estimate mean vector and covariance matrix and compared its results with standard $T^2$-control chart using simulated multivariate data with outliers. We found that the modified $T^2$-control chart based on the above robust methods were more effective in detecting special variations clearly than the standard $T^2$-control chart.

  • PDF

패널내 추계적 요인들의 공분산 관계에 의한 최우추정 (Maximum-Likelihood Estimation using a Variance-Covariance Relationship of Stochastic elements within a panel)

  • 이회경;이진우
    • 경영과학
    • /
    • 제11권2호
    • /
    • pp.29-41
    • /
    • 1994
  • This paper analyses the stochastic nature of the Permanent Income Hypothesis (PIH) by specifying the variance-covariance structure of PIH based on Hall and Mishkin[3]. Maximum likelihood is employed to estimate the model by explicitely incorporating the heteroscedastic nature of the data into the likelihood. The data used are individual Korean household consumption and income data. The results indicate that the data are generally consistent with the Permanent Income Hypothesis, and about 11 percent of the total variation in consumption may be attributable to the excess sensitivity of consumption to income.

  • PDF

일반화 선형혼합모형의 임의효과 공분산행렬을 위한 모형들의 조사 및 고찰 (Survey of Models for Random Effects Covariance Matrix in Generalized Linear Mixed Model)

  • 김지영;이근백
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.211-219
    • /
    • 2015
  • 일반화 선형혼합모델은 일반적으로 경시적 범주형 자료를 분석하는데 사용된다. 이 모델에서 임의효과는 반복 측정치들의 시간에 따른 의존성을 설명한다. 임의효과 공분산행렬의 추정은 여러가지 제약조건들 때문에 쉽지 않은 문제이다. 제약조건으로는 행렬의 모수들의 수가 많으며, 또한 추정된 공분산행렬은 양정치성을 만족하여야 한다. 이러한 제한을 극복하기 위해, 임의효과 공분산행렬의 모형화를 위한 여러가지 방법이 제안되었다: 수정 단냠레스키분해, 이동평균 단냠레스키분해와 부분 자기상관행렬을 이용한 방법이 있다. 이 논문에서 위의 제안된 방법들을 소개한다.

Multiple Comparisons With the Best in the Analysis of Covariance

  • Lee, Young-Hoon
    • Journal of the Korean Statistical Society
    • /
    • 제23권1호
    • /
    • pp.53-62
    • /
    • 1994
  • When a comparison is made with respect to the unknown best treatment, Hsu (1984, 1985) proposed the so called multiple comparisons procedures with the best in the analysis of variance model. Applying Hsu's results to the analysis of covariance model, simultaneous confidence intervals for multiple comparisons with the best in a balanced one-way layout with a random covariate are developed and are applied to a real data example.

  • PDF

해석적 방법에 의한 PDAF의 성능예측 분석 (Performance Prediction Analysis for the PDA Filter)

  • 김국민;송택렬
    • 제어로봇시스템학회논문지
    • /
    • 제9권7호
    • /
    • pp.563-568
    • /
    • 2003
  • In this paper, We propose a target tracking filter which utilizes the PDA for data association in a clutter environment and also propose an analytic solution for ideal filter covariance which accounts for all the possible events in the PDA. Monte Carlo simulation for the proposed filter in a clutter environment indicates that the proposed analytic solution forms the true error covariance of the PDA Filter.