• Title/Summary/Keyword: Covalently

Search Result 261, Processing Time 0.026 seconds

Electrochemical Characteristics of Pt/PEM/Pt-Ru MEA for Water Electrolysis (수전해용 Pt/PEM/Pt-Ru MEA의 전기화학적 특성)

  • Kweon, Oh-Hwan;Kim, Kyung-Eon;Jang, In-Young;Hwang, Yong-Koo;Chung, Jang-Hoon;Moon, Sang-Bong;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.1
    • /
    • pp.18-25
    • /
    • 2008
  • The membrane electrode assembly(MEA) was prepared by a nonequilibrium impregnation- reduction (I-R) method. Nafion 117 and covalently cross-linked sulfonated polyetherether with tungsto- phosphoric acid (CL-SPEEK/TPA30) prepared by our laboratory, were chosen as polymer electrolyte membrane(PEM). $Pt(NH_3)_4Cl_2$, $RuCl_3$ and reducing agent $(NaBH_4)$ were used as electrocatalytic materials. Electrochemical activity surface area(ESA) and specific surface area(SSA) of Pt cathodic electrode with Nafion 117 were $22.48m^2/g$ and $23.50m^2/g$ respectively under the condition of 0.8 M $NaBH_4$. But Pt electrode prepared by CL-SPEEK/TPA30 membrane exhibited higher ESA $23.46m^2/g$ than that of Nafion 117. In case of Pt-Ru anodic electrode, the higher concentration of Ru was, the lower potential of oxygen reduction and region of hydrogen desorption was, and Pt-Ru electrode using 10 mM $RuCl_3$ showed best properties of SSA $34.09m^2/g$ with Nafion 117. In water electrolysis performance, the cell voltage of Pt/PEM/Pt-Ru MEA with Nafion 117 showed cell property of 1.75 V at $1A/cm^2$ and $80{\circ}C$. On the same condition, the cell voltage with CL-SPEEK/TPA30 was the best of 1.73 V at $1A/cm^2$.

Characteristics of CL-SPEEK/HPA Membrane Electrodes with Pt-Ni and Pt-Co Electrocatalysts for Water Electrolysis (전극 촉매 Pt-Ni 및 Pt-Co를 이용한 수전해용 공유가교 CL-SPEEK/HPA 막전극의 특성)

  • Woo, Je-Young;Lee, Kwang-Mun;Jee, Bong-Chul;Chung, Jang-Hoon;Moon, Sang-Bong;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.1
    • /
    • pp.26-34
    • /
    • 2010
  • The electrocatalystic prperties of Pt-Co and Pt-Ni with heteropolyacids (HPAs) entrapped in covalently cross-linked sulfonated poly(ether ether ketone) (CL-SPEEK)/HPA membranes were investigated for water electrolysis. The HP As, including molybdophosphoric acid (MoPA), and tungstophosphoric acid (TPA) were both used as membrane additives and electrocatalysts. The membrane electrode assembly (MEA) was prepared by a nonequilibrium impregnation-reduction (I-R) method. $Pt(NH_3)_4Cl_2$, $NiCl_2$ and $CoCl_2$ as electrocatalytic materials and $NaBH_4$ as reducing agent were used. I order to enhance electrocatalytic activity, the catalyst layer prepared above was electrodeposited (Dep) with HP A. Surface morphologies and physico-chemical properties of MEA were investigated by means of SEM, EDX and XRD. The electrocatalytic properties of composite membranes such as the cell voltage and coulombic charge in CV were in the order of magnitude: CL-SPEEK/MoPA40 (wt%) > CL-SPEEK/TPA30 > Nafion117. In the optimum cell applications for water electrolysis, the cell voltage of Pt/CL-SPEEK-MoPA40/Pt-Co (Dep-MoPA) and Pt/CL-SPEEK-TPA30/Pt-Co (Dep-TPA) was 1.75 Vat $80^{\circ}C$ and $1\;A/cm^2$ and voltage efficiency was 87.1%. Also, the observed activity of Pt-Co (84:16 atomic ratio by EDX) is a little higher than that of Pt-Ni (86: 14). The current density peak of electrodeposited electrodes were better a little than those of unactivated electrodes based on the same membranes.

Calcium Aluminate Phosphor Supported $TiO_2$ Nanoparticles (산화(酸化)티탄 나노입자(粒子)가 담지(擔持)된 칼슘 알루미늄 형광체(螢光體))

  • Thube, Dilip R.;Kim, Jin-Hwan;Kang, Suk-Min;Ryu, Ho-Jin
    • Resources Recycling
    • /
    • v.18 no.4
    • /
    • pp.24-30
    • /
    • 2009
  • Rare earth based calcium aluminate phosphor ($CaAl_2O_4:Eu^{2+}$, $Nd^{3+}$) supported $TiO_2$ nanoparticles are synthesized by using sol-gel method, which are further characterized using powder X-ray diffraction (XRD), fourier transform infrared (FT-IR), diffuse reflectance UV-Visible spectroscopy (DRS UV-Vis) and transmission electron microscopy (TEM). The XRD pattern of as-prepared and sintered phosphor supported $TiO_2$ does not show the tendency to change the crystal structure from anatase to rutile phase up to $600^{\circ}C$. This indicates that the phosphor support might inhibit the densification and crystallite growth by providing dissimilar boundaries. The diffuse reflectance spectral (DRS) measurements showed shift towards longer wavelength indicating reduction in the band-gap energy as compared to free $TiO_2$. The FT-IR spectra of phosphor supported $TiO_2$ nanoparticles show shift in the peak positions to lower wavelengths. This indicates that the $TiO_2$ nanoparticles are not free, but covalently bonded to the phosphor support. TEM micrographs show presence of crystalline and spherical $TiO_2$ nanoparticles (8 - 15 nm diameter) dispersed uniformly on the surface of phosphor.

Viroid-the Smallest Plant Pathogen (바이로이드-가장 작은 식물병원체)

  • Lee Jai Youl
    • Korean Journal Plant Pathology
    • /
    • v.1 no.3
    • /
    • pp.199-206
    • /
    • 1985
  • Viroids are the smallest. well-characterized infectious agents presently known. and so far viroids have been found only in higher plants. The structures of viroid-molecules are single-stranded, covalently closed circular RNA molecules with a range of 240 to 380 nucleotides according to the various viroids. Viroids are remarkable not only as a new category of pathogen, which cause economically important diseases, but also as an excellent model system for biochemical and biophysical investigations because of their small size, relative stability and their self-replication. Four different patato spindle tuber viroid isolates, which express the different symptoms on the same host plant exchange only 2 to 6 nucleotides in the total number of 359 nucleotides, but now the mechanism of viroid pathogenicity is not explained fully. Viroid-melecules are replicated without any special viroid-associated proteins, and during the process of viroid replication oligomeric viroid-associated RNAs are detected at nuclei of viroid infected leaf tissue. The mechanism of viroid replication can now be illustrated according to a possible explanation of rolling-circle system. Although the rapid progress have been made in elucidation of the biochemical and biophysical properties of PSTV and other viroids, the mechanism of viroid replication and pathogenicity is less known and is still a matter of speculation. When these problems can be sufficiently explained, the viroid molecule could play an important role as an available vector in plant genetic engineering.

  • PDF

Ghrelin Attenuates Dexamethasone-induced T-cell Apoptosis by Suppression of the Glucocorticoid Receptor (덱사메타손에 의해 유발된 흉선 T세포사멸에 대한 그렐린의 세포사멸억제효과)

  • Lee, Jun Ho
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1356-1363
    • /
    • 2014
  • Ghrelin is a 28 amino acid orexigenic peptide hormone that is secreted predominantly by tX/A cells in the stomach, and it plays a major role in energy homeostasis. Activated ghrelin has an n-octanoyl group covalently linked to the hydroxyl group of the Ser3 residue, which is critical for its binding to the G-protein coupled growth hormone secretagogue receptor-1a (GHS-R1a). According to recent reports, both ghrelin and its receptor, GHS-R1a, are expressed by a variety of immune cells, including T- and B-lymphocytes, monocytes, and dendritic cells, and ghrelin stimulation of leukocytes provides a potent immunomodulatory signal controlling systemic and age-associated inflammation and thymic involution. Here, we report that ghrelin protected murine thymocytes from dexamethasone (DEX)-induced cell death both in vivo and in vitro. Subsequently, we explored the molecular mechanisms of the antiapoptotic effect of ghrelin. According to our experiments, ghrelin inhibited the expression of proapoptotic proteins via the regulation of glucocorticoid receptor (GR) phosphorylation. As a result, ghrelin inhibited the proapoptotic activation of proteins, such as Caspase-3, PARP, and Bim. These data suggest that ghrelin, through GHS-R, inhibits the pathway to apoptosis by regulation of the proapoptotic protein activation signal pathway. They provide evidence that blocking apoptosis is an essential function of ghrelin during the development of thymocytes.

Fabrication of Hybrid Nanocomposites of PAA-grafted Graphene and Pd Nanoparticles having POSS (Pd-POSS) (그래핀과 실세스키옥세인을 포함한 팔라듐 나노입자와의 나노복합체 제조)

  • Lim, Jung-Hyurk;Ko, Yl-Woong;Kim, Ki-Young;Kim, Kyung-Min
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.656-661
    • /
    • 2012
  • The palladium nanoparticles were self-assembled to make Pd-POSS using POSS-$NH_3{^+}$ (polyhedral oligomeric silsesquioxane) as a crosslinker. Graphene oxide (GO) was produced by the reaction of graphite under a strong acid and oxidizer and poly(acrylic acid) (PAA) was covalently grafted on the surface of graphene to make PAA-grafted graphene through the radical polymerization of acrylic acid and GO along with a reduction process under $NaBH_4$. The nanocomposites of Pd-POSS and PAA-grafted graphene were fabricated via ionic interactions between positively charged Pd-POSS and negatively charged PAA-grafted graphene. Pd-POSS nanoparticles were attached to the surface of PAA-grafted graphene through ionic interactions. The thermal stability of Pd-POSS/PAA-grafted graphene was higher than that of PAA and PAA-grafted graphene. The composition, structure, surface morphology, and thermal stability of the Pd-POSS/PAA-grafted graphene were studied by FE-SEM, AFM, TEM, FTIR, and TGA.

Phosphatidic Acid Production by PLD Covalently Immobilized on Porous Membrane (공유결합으로 다공성 막에 고정화된 PLD에 의한 포스퍼티딕산 생산)

  • Park, Jin-Won
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.224-228
    • /
    • 2015
  • Phospholipase D (PLD) was immobilized on a submicro-porous membrane through covalent immobilization. The immobilization was conducted on the porous membrane surface with the treatment of polyethyleneimine, glutaraldehyde, and the anhydrase, in sequence. The immobilization was confirmed using X-ray photon spectrometer. The pH values of phosphatidylcholine (PC) dispersion solution with buffer were monitored with respect to time to calculate the catalytic activities of PC for free and immobilized PLD. The catalytic rate constant values for free PLD, immobilized PLD on polystyrene nanoparticles, and immobilized PLD on a porous cellulose acetate membrane were 0.75, 0.64, and 0.52 s-1, respectively. Reusability was studied up to 10 cycles of PC hydrolysis. The activity for the PLD immobilized on the membrane was kept to 95% after 10 cycles, and comparable to the PLD on the nanoparticles. The stabilities for heat and storage were also investigated for the three cases. The results suggested that the PLD immobilized on the membrane had the least loss rate of the activity compared to the others. From these studies, the porous membrane was feasible as a carrier for the PLD immobilization in the production of phosphatidic acid.

Continuous Production of Authentic Human Growth Hormone from Methionyl Human Growth Hormone Using the Column Reactor of Immobilized Aminopeptidase M (고정화 Aminopeptidase M 컬럼 반응기를 이용한 메치오닐 인간성장호르몬으로부터 천연형 인간성장호르몬의 연속생산)

  • 이성희;김기태
    • KSBB Journal
    • /
    • v.10 no.3
    • /
    • pp.283-291
    • /
    • 1995
  • The characteristics of aminopeptidase M(ApM) immobilized covalently on Cellufine Formyl and the continuous production of authentic human growth hormone(hGH) from methionyl human growth hormono(met-hGH) using the column reactor packed with immobilized ApM were investigated. Immobilized ApM with the proportion of 2.3mg ApM per 1g Cellufine Formyl gel had the highest met-hGH conversion activity. The optimum pH(7.0) and temperature($55^{\circ}C$) showed no appreciable difference between free and immobilized enzymes and the optimum temperature in continuous operation of the column reactor was also found to be $55^{\circ}C$. Under the conditions at which met-hGH was converted completely to hGH, the yield and productivity were about 77% and 0.8mg hGH/ml$.$h, respectively. In two column reactors of different sizes, met-hGH was converted to hGH with the same conversion rates and hGH yields at the same space velocities. The half-life of the reactor systems at $45^{\circ}C$ and $55^{\circ}C$ were projected from the continuous operations for 90 days to be 225 days and 81 days, respectively.

  • PDF

Error-Prone and Error-Free Translesion DNA Synthesis over Site-Specifically Created DNA Adducts of Aryl Hydrocarbons (3-Nitrobenzanthrone and 4-Aminobiphenyl)

  • Yagi, kashi;Fujikawa, Yoshihiro;Sawai, Tomoko;Takamura-Enya, Takeji;Ito-Harashima, Sayoko;Kawanishi, Masanobu
    • Toxicological Research
    • /
    • v.33 no.4
    • /
    • pp.265-272
    • /
    • 2017
  • Aryl hydrocarbons such as 3-nitrobenzanthrone (NBA), 4-aminobiphenyl (ABP), acetylaminofluorene (AAF), benzo(a)pyrene (BaP), and 1-nitropyrene (NP) form bulky DNA adducts when absorbed by mammalian cells. These chemicals are metabolically activated to reactive forms in mammalian cells and preferentially get attached covalently to the $N^2$ or C8 positions of guanine or the $N^6$ position of adenine. The proportion of $N^2$ and C8 guanine adducts in DNA differs among chemicals. Although these adducts block DNA replication, cells have a mechanism allowing to continue replication by bypassing these adducts: translesion DNA synthesis (TLS). TLS is performed by translesion DNA polymerases-Pol ${\eta}$, ${\kappa}$, ${\iota}$, and ${\zeta}$ and Rev1-in an error-free or error-prone manner. Regarding the NBA adducts, namely, 2-(2'-deoxyguanosin-$N^2$-yl)-3-aminobenzanthrone (dG-$N^2$-ABA) and N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (dG-C8-ABA), dG-$N^2$-ABA is produced more often than dG-C8-ABA, whereas dG-C8-ABA blocks DNA replication more strongly than dG-$N^2$-ABA. dG-$N^2$-ABA allows for a less error-prone bypass than dG-C8-ABA does. Pol ${\eta}$ and ${\kappa}$ are stronger contributors to TLS over dG-C8-ABA, and Pol ${\kappa}$ bypasses dG-C8-ABA in an error-prone manner. TLS efficiency and error-proneness are affected by the sequences surrounding the adduct, as demonstrated in our previous study on an ABP adduct, N-(2'-deoxyguanosine-8-yl)-4-aminobiphenyl (dG-C8-ABP). Elucidation of the general mechanisms determining efficiency, error-proneness, and the polymerases involved in TLS over various adducts is the next step in the research on TLS. These TLS studies will clarify the mechanisms underlying aryl hydrocarbon mutagenesis and carcinogenesis in more detail.

Separation of Kiwi Pectinesterase Inhibitor and its Effect on Cloud Maintenance in Cloudy Juices (Kiwi pectinesterase inhibitor의 분리와 불투명 과즙의 혼탁성 유지)

  • Kim, Myoung-Hwa;Go, Eun-Kyoung;Hou, Won-Nyoung
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.1079-1086
    • /
    • 2000
  • Pectinesterase inhibitor(PEI) of ripened kiwi fruit(Actinidia chinensis) was separated with affinity chromatography using CNBr-activated Sepharose 4B being covalently bound by orange pectinesterse(PE). The affinity resin strongly and selectively bound PEI, which could be eluted in high yield as a single peak by pH 9.5 without loss of inhibitory activity. The separated PEI had maintained almost inhibitory activity at $-25^{\circ}C$ and $5^{\circ}C$ during 30 days but lost it at room temperature in 4 weeks. The PEI possessed a molecular weight of 16.6 KDa, as estimated by 12.5% SDS-PAGE. PEI had optimum pH of 7.5, optimum temperature of below $10^{\circ}C$ and stability up to $70^{\circ}C$. Also, optimum inhibitory activity for PEI was obtained in 0.2 M NaCl of substrate solutions. The kind of inhibition on tomato pectinesterase was found to be noncompetitive, using citrus pectin as substrate. Fresh orange juice added with crude PEI extracts maintained almost the same cloud stability as pasteurized juice. In case of apple juice, the addition of crude PEI extracts to apple juice had decrease of L-ascorbic acid with nearly no effect on cloud loss.

  • PDF