Browse > Article
http://dx.doi.org/10.5487/TR.2017.33.4.265

Error-Prone and Error-Free Translesion DNA Synthesis over Site-Specifically Created DNA Adducts of Aryl Hydrocarbons (3-Nitrobenzanthrone and 4-Aminobiphenyl)  

Yagi, kashi (Department of Biology, Graduate School of Science, Osaka Prefecture University)
Fujikawa, Yoshihiro (Department of Biology, Graduate School of Science, Osaka Prefecture University)
Sawai, Tomoko (Department of Biology, Graduate School of Science, Osaka Prefecture University)
Takamura-Enya, Takeji (Department of Applied Chemistry, Kanagawa Institute of Technology)
Ito-Harashima, Sayoko (Department of Biology, Graduate School of Science, Osaka Prefecture University)
Kawanishi, Masanobu (Department of Biology, Graduate School of Science, Osaka Prefecture University)
Publication Information
Toxicological Research / v.33, no.4, 2017 , pp. 265-272 More about this Journal
Abstract
Aryl hydrocarbons such as 3-nitrobenzanthrone (NBA), 4-aminobiphenyl (ABP), acetylaminofluorene (AAF), benzo(a)pyrene (BaP), and 1-nitropyrene (NP) form bulky DNA adducts when absorbed by mammalian cells. These chemicals are metabolically activated to reactive forms in mammalian cells and preferentially get attached covalently to the $N^2$ or C8 positions of guanine or the $N^6$ position of adenine. The proportion of $N^2$ and C8 guanine adducts in DNA differs among chemicals. Although these adducts block DNA replication, cells have a mechanism allowing to continue replication by bypassing these adducts: translesion DNA synthesis (TLS). TLS is performed by translesion DNA polymerases-Pol ${\eta}$, ${\kappa}$, ${\iota}$, and ${\zeta}$ and Rev1-in an error-free or error-prone manner. Regarding the NBA adducts, namely, 2-(2'-deoxyguanosin-$N^2$-yl)-3-aminobenzanthrone (dG-$N^2$-ABA) and N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (dG-C8-ABA), dG-$N^2$-ABA is produced more often than dG-C8-ABA, whereas dG-C8-ABA blocks DNA replication more strongly than dG-$N^2$-ABA. dG-$N^2$-ABA allows for a less error-prone bypass than dG-C8-ABA does. Pol ${\eta}$ and ${\kappa}$ are stronger contributors to TLS over dG-C8-ABA, and Pol ${\kappa}$ bypasses dG-C8-ABA in an error-prone manner. TLS efficiency and error-proneness are affected by the sequences surrounding the adduct, as demonstrated in our previous study on an ABP adduct, N-(2'-deoxyguanosine-8-yl)-4-aminobiphenyl (dG-C8-ABP). Elucidation of the general mechanisms determining efficiency, error-proneness, and the polymerases involved in TLS over various adducts is the next step in the research on TLS. These TLS studies will clarify the mechanisms underlying aryl hydrocarbon mutagenesis and carcinogenesis in more detail.
Keywords
Aryl hydrocarbon; DNA adduct; Translesion DNA synthesis; 3-Nitrobenzanthrone; Mutation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Carter, R.J. and Parsons, J.L. (2016) Base excision repair, a pathway regulated by posttranslational modifications. Mol. Cell. Biol., 36, 1426-1437.   DOI
2 Sale, J.E. (2013) Translesion DNA synthesis and mutagenesis in eukaryotes. Cold Spring Harb. Perspect. Biol., 5, a012708.
3 Tokarsky, E.J., Gadkari, V.V., Zahurancika, W.J., Malik, C.K., Basu, A.K. and Suo, Z. (2016) Pre-steady-state kinetic investigation of bypass of a bulky guanine lesion by human Y-family DNA polymerases. DNA Repair (Amst.), 46, 20-28.   DOI
4 Patra, A., Politica, D.A., Chatterjee, A., Tokarsky, E.J., Suo, Z., Basu, A.K., Stone, M.P. and Egli, M. (2016) Mechanism of error-free bypass of the environmental carcinogen N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone adduct by human DNA polymerase $\eta$. Chembiochem, 17, 2033-2037.   DOI
5 Sherrer, S.M., Sanman, L.E., Xia, C.X., Bolin, E.R., Malik, C.K., Efthimiopoulos, G., Basu, A.K. and Suo, Z. (2012) Kinetic analysis of the bypass of a bulky DNA lesion catalyzed by human Y-family DNA polymerases. Chem. Res. Toxicol., 25, 730-740.   DOI
6 Sherrer, S.M., Taggart, D.J., Pack, L.R., Malik, C.K., Basu, A.K. and Suo, Z. (2012) Quantitative analysis of the mutagenic potential of 1-aminopyrene-DNA adduct bypass catalyzed by Y-family DNA polymerases. Mutat. Res., 737, 25-33.   DOI
7 Takamura-Enya, T., Suzuki, H. and Hisamatsu, Y. (2006) Mutagenic activities and physicochemical properties of selected nitrobenzanthrones. Mutagenesis, 21, 399-404.   DOI
8 Baird, W.M., Hooven, L.A. and Mahadevan, B. (2005) Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ. Mol. Mutagen., 45, 106-114.   DOI
9 Alexandrov, K., Rojas, M. and Satarug, S. (2010) The critical DNA damage by benzo(a)pyrene in lung tissues of smokers and approaches to preventing its formation. Toxicol. Lett., 198, 63-68.   DOI
10 Shiizaki, K., Kawanishi, M. and Yagi, T. (2017) Modulation of benzo[a]pyrene-DNA adduct formation by CYP1 inducer and inhibitor. Genes Environ., 39, 14.   DOI
11 Arlt, V.M., Schmeiser, H.H., Osborne, M.R., Kawanishi, M., Kanno, T., Yagi, T., Phillips, D.H. and Takamura-Enya, T. (2006) Identification of three major DNA adducts formed by the carcinogenic air pollutant 3-nitrobenzanthrone in rat lung at the C8 and $N^2$ position of guanine and at the N6 position of adenine. Int. J. Cancer, 118, 2139-2146.   DOI
12 Takamura-Enya, T., Kawanishi, M., Yagi, T. and Hisamatsu, Y. (2007) Structural identification of DNA adducts derived from 3-nitrobenzanthrone, a potent carcinogen present in the atmosphere. Chem. Asian J., 2, 1174-1185.   DOI
13 Kanno, T., Kawanishi, M., Takamura-Enya. T., Arlt, V.M., Phillips, D.H. and Yagi, T. (2007) DNA adduct formation in human hepatoma cells treated with 3-nitrobenzanthrone: analysis by the $^{32}P$-postlabeling method. Mutat. Res., 634, 184-191.   DOI
14 Kawanishi, M., Fujikawa, Y., Ishii, H., Nishida, H., Higashigaki, Y., Kanno, T., Matsuda, T., Takamura-Enya, T. and Yagi, T. (2013) Adduct formation and repair, and translesion DNA synthesis across the adducts in human cells exposed to 3-nitrobenzanthrone. Mutat. Res., 753, 93-100.   DOI
15 Shibutani, S., Suzuki, N. and Grollman, A.P. (2004) Mechanism of frameshift (deletion) generated by acetylaminofluorene-derived DNA adducts in vitro. Biochemistry, 43, 15929-15935.   DOI
16 Livneh, Z., Ziv, O. and Shachar, S. (2010) Multiple two-polymerase mechanisms in mammalian translesion DNA synthesis. Cell Cycle, 9, 729-735.   DOI
17 Goodman, M.F. and Woodgate, R. (2013) Translesion DNA polymerases. Cold Spring Harb. Perspect. Biol., 5, a010363.
18 Kirouac, K.N., Basu, A.K. and Ling, H. (2013) Replication of a carcinogenic nitropyrene DNA lesion by human Y-family DNA polymerase. Nucleic Acids Res., 41, 2060-2071.   DOI
19 Schorr, S., Schneider, S., Lammens, K., Hopfner, K.P. and Carell, T. (2010) Mechanism of replication blocking and by pass of Y-family polymerase $\eta$ by bulky acetylaminofluorene DNA adducts. Proc. Natl. Acad. Sci. U.S.A., 107, 20720-20725.   DOI
20 Suzuki, N., Ohashi, E., Kolbanovskiy, A., Geacintov, N.E., Grollman, A.P., Ohmori. H. and Shibutani, S. (2002) Translesion synthesis by human DNA polymerase ${\kappa}$ on a DNA template containing a single stereoisomer of dG-(+)- or dG-(-)-anti-$N^2$-BPDE (7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene). Biochemistry, 41, 6100-6106.   DOI
21 Tolentino, J.H., Burke, T.J., Mukhopadhyay, S., McGregor, W.G. and Basu, A.K. (2008) Inhibition of DNA replication fork progression and mutagenic potential of 1, $N^6$-ethenoadenine and 8-oxoguanine in human cell extracts. Nucleic Acids Res., 36, 1300-1308.
22 Choi, J.Y., Angel, K.C. and Guengerich, F.P. (2006) Translesion synthesis across bulky $N^2$-alkyl guanine DNA adducts by human DNA polymerase ${\kappa}$. J. Biol. Chem., 281, 21062-21072.   DOI
23 Frank, E.G., Sayer, J.M., Kroth, H., Ohashi, E., Ohmori, H., Jerina, D.M. and Woodgate, R. (2002) Translesion replication of benzo[a]pyrene and benzo[c]phenanthrene diol epoxide adducts of deoxyadenosine and deoxyguanosine by human DNA polymerase iota. Nucleic Acids Res., 30, 5284-5292.   DOI
24 Basu, A.K., Pande, P. and Bose, A. (2017) Translesion synthesis of 2'-deoxyguanosine lesions by eukaryotic DNA polymerases. Chem. Res. Toxicol., 30, 61-72.   DOI
25 Avkin, S., Goldsmith, M., Velasco-Miguel, S., Geacintov, N., Friedberg, E.C. and Livneh, Z. (2004) Quantitative analysis of translesion DNA synthesis across a benzo[a]pyrene-guanine adduct in mammalian cells: the role of DNA polymerase $\kappa$. J. Biol. Chem., 279, 53298-53305.   DOI
26 Watt, D.L., Utzat, C.D., Hilario, P. and Basu, A.K. (2007) Mutagenicity of the 1-nitropyrene-DNA adduct N-(deoxyguanosin-8-yl)-1-aminopyrene in mammalian cells. Chem. Res. Toxicol., 20, 1658-1664.   DOI
27 Pande, P., Malik, C.K., Bose, A., Jasti, V.P. and Basu, A.K. (2014) Mutational analysis of the C8-guanine adduct of the environmental carcinogen 3-nitrobenzanthrone in human cells: critical roles of DNA polymerases $\eta$ and $\kappa$ and Rev1 in errorprone translesion synthesis. Biochemistry, 53, 5323-5331.   DOI
28 Veaute, X. and Fuchs, R. (1993) Greater susceptibility to mutations in lagging strand of DNA replication in Escherichia coli than in leading strand. Science, 261, 598-600.   DOI
29 Sawai, T., Kawanishi, M., Takamura-Enya, T. and Yagi, T. (2009) Establishment of a method for analyzing translesion DNA synthesis across a single bulky adduct in human cells. Genes Environ., 31, 24-30.   DOI
30 Kawanishi, M., Kanno, T., Nishida, H., Takamura-Enya, T. and Yagi, T. (2013) Translesion DNA synthesis across various DNA adducts produced by 3-nitrobenzanthrone in Escherichia coli. Mutat. Res., 754, 32-38.   DOI
31 Spivak, G. (2015) Nucleotide excision repair in humans. DNA Repair (Amst.), 36, 13-18.   DOI
32 Sawai, T., Kawanishi, M., Takamura-Enya, T. and Yagi, T. (2009) Mutations mediated by translesion DNA synthesis over 4-aminobiphenyl adducts in human cells. Radiat. Biol. Commun., 44, 274-284 (in Japanese).
33 Maga, G., Villani, G., Crespan, E., Wimmer, U., Ferrari, E., Bertocci, B. and Hubscher, U. (2007) 8-oxo-guanine bypass by human DNA polymerases in the presence of auxiliary proteins. Nature, 447, 606-608.   DOI
34 Choi, H., Harrison, R., Komulainen, H. and Saborit, J.M.D. (2010) Polycyclic aromatic hydrocarbons in WHO Guidelines for Indoor Air Quality: Selected Pollutants. World Health Organization, Geneva, pp. 299-346.
35 Nagy, E., Zeisig, M., Kawamura, K., Hisamatsu, Y., Sugeta, A., Adachi, S. and Moller, L. (2005) DNA adduct and tumor formations in rats after intratracheal administration of the urban air pollutant 3-nitrobenzanthrone. Carcinogenesis, 26, 1821-1828.   DOI
36 Cohen, S.M., Boobis, A.R., Meek, M.E., Preston, R.J. and McGregor, D.B. (2006) 4-Aminobiphenyl and DNA reactivity: case study within the context of the 2006 IPCS Human Relevance Framework for Analysis of a cancer mode of action for humans. Crit. Rev. Toxicol., 36, 803-819.   DOI
37 IARC (1987) 4-Aminobiphenyl in Overall Evaluations of Carcinogenicity. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans (Suppl. 7). International Agency for Research on Cancer, Lyon, France, pp. 91-92.
38 Besaratinia, A. and Tommasi, S. (2013) Genotoxicity of tobacco smoke-derived aromatic amines and bladder cancer: current state of knowledge and future research directions. FASEB J., 27, 2090-2100.   DOI
39 Feng, Z., Hu, W., Rom, W.N., Beland, F.A. and Tang, M.S. (2002) 4-aminobiphenyl is a major etiological agent of human bladder cancer: evidence from its DNA binding spectrum in human p53 gene. Carcinogenesis, 23, 1721-1727.   DOI
40 Fuss, J.O. and Cooper, P.K. (2006) DNA repair: dynamic defenders against cancer and aging. PLoS Biol., 4, e203.   DOI
41 Bauer, N.C., Corbett, A.H. and Doetsch, P.W. (2015) The current state of eukaryotic DNA base damage and repair. Nucleic Acids Res., 43, 10083-10101.
42 Hashimoto, K., Bonala, R., Johnson, F., Grollman, A.P. and Moriya, M. (2016) Y-family DNA polymerase-independent gap-filling translesion synthesis across aristolochic acidderived adenine adducts in mouse cells. DNA Repair (Amst.), 46, 55-60.   DOI
43 Chiapperino, D., Kroth, H., Kramarczuk, I.H., Sayer, J.M., Masutani, C., Hanaoka, F., Jerina, D.M. and Cheh, A.M. (2002) Preferential misincorporation of purine nucleotides by human DNA polymerase eta opposite benzo[a]pyrene 7,8-diol 9,10-epoxide deoxyguanosine adducts. J. Biol. Chem., 277, 11765-11771.   DOI
44 Bose, A., Millsap, A.D., DeLeon, A., Rizzo, C.J. and Basu, A.K. (2016) Translesion synthesis of the $N^2$-2'-deoxyguanosine adduct of the dietary mutagen IQ in human cells: Errorfree replication by DNA polymerase ${\kappa}$ and mutagenic bypass by DNA polymerases ${\eta},\;{\zeta}$, and Rev1. Chem. Res. Toxicol., 29, 1549-1559.   DOI
45 Bose, A., Pande, P., Jasti, V.P., Millsap, A.D., Hawkins, E.K., Rizzo, C.J. and Basu, A.K. (2015) DNA polymerases ${\kappa}$ and $\zeta$ cooperatively perform mutagenic translesion synthesis of the C8-2'-deoxyguanosine adduct of the dietary mutagen IQ in human cells. Nucleic Acids Res., 43, 8340-8351.   DOI
46 Moriya, M. (1993) Single-stranded shuttle phagemid for mutagenesis studies in mammalian cells: 8-oxoguanine in DNA induces targeted G.C-->T.A transversions in simian kidney cells. Proc. Natl. Acad. Sci. U.S.A., 90, 1122-1126.   DOI
47 Yang, I.Y., Miller, H., Wang, Z., Frank, E.G., Ohmori, H., Hanaoka, F. and Moriya, M. (2003) Mammalian translesion DNA synthesis across an acrolein-derived deoxyguanosine adduct. Participation of DNA polymerase $\eta$ in error-prone synthesis in human cells. J. Biol. Chem., 278, 13989-13994.   DOI
48 Pollack, M., Yang, I.Y., Kim, H.Y., Blair, I.A. and Moriya, M. (2006) Translesion DNA Synthesis across the heptanone--etheno-2'-deoxycytidine adduct in cells. Chem. Res. Toxicol., 19, 1074-1079.   DOI
49 Yasui, M., Dong, H., Bonala R.R., Suzuki, N., Ohmori, H., Hanaoka, F., Johnson, F., Grollman, A.P. and Shibutani S. (2004) Mutagenic properties of 3-(deoxyguanosin-$N^2$-yl)-2-acetylaminofluorene, a persistent acetylaminofluorene-derived DNA adduct in mammalian cells. Biochemistry, 43, 15005-15013.   DOI
50 Avkin, S. and Livneh, Z. (2002) Efficiency, specificity and DNA polymerase-dependence of translesion replication across the oxidative DNA lesion 8-oxoguanine in human cells. Mutat. Res., 510, 81-90.   DOI