DOI QR코드

DOI QR Code

Error-Prone and Error-Free Translesion DNA Synthesis over Site-Specifically Created DNA Adducts of Aryl Hydrocarbons (3-Nitrobenzanthrone and 4-Aminobiphenyl)

  • Yagi, kashi (Department of Biology, Graduate School of Science, Osaka Prefecture University) ;
  • Fujikawa, Yoshihiro (Department of Biology, Graduate School of Science, Osaka Prefecture University) ;
  • Sawai, Tomoko (Department of Biology, Graduate School of Science, Osaka Prefecture University) ;
  • Takamura-Enya, Takeji (Department of Applied Chemistry, Kanagawa Institute of Technology) ;
  • Ito-Harashima, Sayoko (Department of Biology, Graduate School of Science, Osaka Prefecture University) ;
  • Kawanishi, Masanobu (Department of Biology, Graduate School of Science, Osaka Prefecture University)
  • Received : 2017.09.03
  • Accepted : 2017.09.25
  • Published : 2017.10.15

Abstract

Aryl hydrocarbons such as 3-nitrobenzanthrone (NBA), 4-aminobiphenyl (ABP), acetylaminofluorene (AAF), benzo(a)pyrene (BaP), and 1-nitropyrene (NP) form bulky DNA adducts when absorbed by mammalian cells. These chemicals are metabolically activated to reactive forms in mammalian cells and preferentially get attached covalently to the $N^2$ or C8 positions of guanine or the $N^6$ position of adenine. The proportion of $N^2$ and C8 guanine adducts in DNA differs among chemicals. Although these adducts block DNA replication, cells have a mechanism allowing to continue replication by bypassing these adducts: translesion DNA synthesis (TLS). TLS is performed by translesion DNA polymerases-Pol ${\eta}$, ${\kappa}$, ${\iota}$, and ${\zeta}$ and Rev1-in an error-free or error-prone manner. Regarding the NBA adducts, namely, 2-(2'-deoxyguanosin-$N^2$-yl)-3-aminobenzanthrone (dG-$N^2$-ABA) and N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (dG-C8-ABA), dG-$N^2$-ABA is produced more often than dG-C8-ABA, whereas dG-C8-ABA blocks DNA replication more strongly than dG-$N^2$-ABA. dG-$N^2$-ABA allows for a less error-prone bypass than dG-C8-ABA does. Pol ${\eta}$ and ${\kappa}$ are stronger contributors to TLS over dG-C8-ABA, and Pol ${\kappa}$ bypasses dG-C8-ABA in an error-prone manner. TLS efficiency and error-proneness are affected by the sequences surrounding the adduct, as demonstrated in our previous study on an ABP adduct, N-(2'-deoxyguanosine-8-yl)-4-aminobiphenyl (dG-C8-ABP). Elucidation of the general mechanisms determining efficiency, error-proneness, and the polymerases involved in TLS over various adducts is the next step in the research on TLS. These TLS studies will clarify the mechanisms underlying aryl hydrocarbon mutagenesis and carcinogenesis in more detail.

Keywords

References

  1. Choi, H., Harrison, R., Komulainen, H. and Saborit, J.M.D. (2010) Polycyclic aromatic hydrocarbons in WHO Guidelines for Indoor Air Quality: Selected Pollutants. World Health Organization, Geneva, pp. 299-346.
  2. Baird, W.M., Hooven, L.A. and Mahadevan, B. (2005) Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ. Mol. Mutagen., 45, 106-114. https://doi.org/10.1002/em.20095
  3. Alexandrov, K., Rojas, M. and Satarug, S. (2010) The critical DNA damage by benzo(a)pyrene in lung tissues of smokers and approaches to preventing its formation. Toxicol. Lett., 198, 63-68. https://doi.org/10.1016/j.toxlet.2010.04.009
  4. Shiizaki, K., Kawanishi, M. and Yagi, T. (2017) Modulation of benzo[a]pyrene-DNA adduct formation by CYP1 inducer and inhibitor. Genes Environ., 39, 14. https://doi.org/10.1186/s41021-017-0076-x
  5. Takamura-Enya, T., Suzuki, H. and Hisamatsu, Y. (2006) Mutagenic activities and physicochemical properties of selected nitrobenzanthrones. Mutagenesis, 21, 399-404. https://doi.org/10.1093/mutage/gel045
  6. Arlt, V.M., Schmeiser, H.H., Osborne, M.R., Kawanishi, M., Kanno, T., Yagi, T., Phillips, D.H. and Takamura-Enya, T. (2006) Identification of three major DNA adducts formed by the carcinogenic air pollutant 3-nitrobenzanthrone in rat lung at the C8 and $N^2$ position of guanine and at the N6 position of adenine. Int. J. Cancer, 118, 2139-2146. https://doi.org/10.1002/ijc.21622
  7. Takamura-Enya, T., Kawanishi, M., Yagi, T. and Hisamatsu, Y. (2007) Structural identification of DNA adducts derived from 3-nitrobenzanthrone, a potent carcinogen present in the atmosphere. Chem. Asian J., 2, 1174-1185. https://doi.org/10.1002/asia.200700061
  8. Kanno, T., Kawanishi, M., Takamura-Enya. T., Arlt, V.M., Phillips, D.H. and Yagi, T. (2007) DNA adduct formation in human hepatoma cells treated with 3-nitrobenzanthrone: analysis by the $^{32}P$-postlabeling method. Mutat. Res., 634, 184-191. https://doi.org/10.1016/j.mrgentox.2007.07.002
  9. Kawanishi, M., Fujikawa, Y., Ishii, H., Nishida, H., Higashigaki, Y., Kanno, T., Matsuda, T., Takamura-Enya, T. and Yagi, T. (2013) Adduct formation and repair, and translesion DNA synthesis across the adducts in human cells exposed to 3-nitrobenzanthrone. Mutat. Res., 753, 93-100. https://doi.org/10.1016/j.mrgentox.2013.03.005
  10. Nagy, E., Zeisig, M., Kawamura, K., Hisamatsu, Y., Sugeta, A., Adachi, S. and Moller, L. (2005) DNA adduct and tumor formations in rats after intratracheal administration of the urban air pollutant 3-nitrobenzanthrone. Carcinogenesis, 26, 1821-1828. https://doi.org/10.1093/carcin/bgi141
  11. Cohen, S.M., Boobis, A.R., Meek, M.E., Preston, R.J. and McGregor, D.B. (2006) 4-Aminobiphenyl and DNA reactivity: case study within the context of the 2006 IPCS Human Relevance Framework for Analysis of a cancer mode of action for humans. Crit. Rev. Toxicol., 36, 803-819. https://doi.org/10.1080/10408440600977651
  12. IARC (1987) 4-Aminobiphenyl in Overall Evaluations of Carcinogenicity. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans (Suppl. 7). International Agency for Research on Cancer, Lyon, France, pp. 91-92.
  13. Besaratinia, A. and Tommasi, S. (2013) Genotoxicity of tobacco smoke-derived aromatic amines and bladder cancer: current state of knowledge and future research directions. FASEB J., 27, 2090-2100. https://doi.org/10.1096/fj.12-227074
  14. Feng, Z., Hu, W., Rom, W.N., Beland, F.A. and Tang, M.S. (2002) 4-aminobiphenyl is a major etiological agent of human bladder cancer: evidence from its DNA binding spectrum in human p53 gene. Carcinogenesis, 23, 1721-1727. https://doi.org/10.1093/carcin/23.10.1721
  15. Fuss, J.O. and Cooper, P.K. (2006) DNA repair: dynamic defenders against cancer and aging. PLoS Biol., 4, e203. https://doi.org/10.1371/journal.pbio.0040203
  16. Spivak, G. (2015) Nucleotide excision repair in humans. DNA Repair (Amst.), 36, 13-18. https://doi.org/10.1016/j.dnarep.2015.09.003
  17. Bauer, N.C., Corbett, A.H. and Doetsch, P.W. (2015) The current state of eukaryotic DNA base damage and repair. Nucleic Acids Res., 43, 10083-10101.
  18. Carter, R.J. and Parsons, J.L. (2016) Base excision repair, a pathway regulated by posttranslational modifications. Mol. Cell. Biol., 36, 1426-1437. https://doi.org/10.1128/MCB.00030-16
  19. Sale, J.E. (2013) Translesion DNA synthesis and mutagenesis in eukaryotes. Cold Spring Harb. Perspect. Biol., 5, a012708.
  20. Basu, A.K., Pande, P. and Bose, A. (2017) Translesion synthesis of 2'-deoxyguanosine lesions by eukaryotic DNA polymerases. Chem. Res. Toxicol., 30, 61-72. https://doi.org/10.1021/acs.chemrestox.6b00285
  21. Livneh, Z., Ziv, O. and Shachar, S. (2010) Multiple two-polymerase mechanisms in mammalian translesion DNA synthesis. Cell Cycle, 9, 729-735. https://doi.org/10.4161/cc.9.4.10727
  22. Goodman, M.F. and Woodgate, R. (2013) Translesion DNA polymerases. Cold Spring Harb. Perspect. Biol., 5, a010363.
  23. Kirouac, K.N., Basu, A.K. and Ling, H. (2013) Replication of a carcinogenic nitropyrene DNA lesion by human Y-family DNA polymerase. Nucleic Acids Res., 41, 2060-2071. https://doi.org/10.1093/nar/gks1296
  24. Shibutani, S., Suzuki, N. and Grollman, A.P. (2004) Mechanism of frameshift (deletion) generated by acetylaminofluorene-derived DNA adducts in vitro. Biochemistry, 43, 15929-15935. https://doi.org/10.1021/bi048087e
  25. Schorr, S., Schneider, S., Lammens, K., Hopfner, K.P. and Carell, T. (2010) Mechanism of replication blocking and by pass of Y-family polymerase $\eta$ by bulky acetylaminofluorene DNA adducts. Proc. Natl. Acad. Sci. U.S.A., 107, 20720-20725. https://doi.org/10.1073/pnas.1008894107
  26. Suzuki, N., Ohashi, E., Kolbanovskiy, A., Geacintov, N.E., Grollman, A.P., Ohmori. H. and Shibutani, S. (2002) Translesion synthesis by human DNA polymerase ${\kappa}$ on a DNA template containing a single stereoisomer of dG-(+)- or dG-(-)-anti-$N^2$-BPDE (7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene). Biochemistry, 41, 6100-6106. https://doi.org/10.1021/bi020049c
  27. Choi, J.Y., Angel, K.C. and Guengerich, F.P. (2006) Translesion synthesis across bulky $N^2$-alkyl guanine DNA adducts by human DNA polymerase ${\kappa}$. J. Biol. Chem., 281, 21062-21072. https://doi.org/10.1074/jbc.M602246200
  28. Frank, E.G., Sayer, J.M., Kroth, H., Ohashi, E., Ohmori, H., Jerina, D.M. and Woodgate, R. (2002) Translesion replication of benzo[a]pyrene and benzo[c]phenanthrene diol epoxide adducts of deoxyadenosine and deoxyguanosine by human DNA polymerase iota. Nucleic Acids Res., 30, 5284-5292. https://doi.org/10.1093/nar/gkf643
  29. Chiapperino, D., Kroth, H., Kramarczuk, I.H., Sayer, J.M., Masutani, C., Hanaoka, F., Jerina, D.M. and Cheh, A.M. (2002) Preferential misincorporation of purine nucleotides by human DNA polymerase eta opposite benzo[a]pyrene 7,8-diol 9,10-epoxide deoxyguanosine adducts. J. Biol. Chem., 277, 11765-11771. https://doi.org/10.1074/jbc.M112139200
  30. Bose, A., Millsap, A.D., DeLeon, A., Rizzo, C.J. and Basu, A.K. (2016) Translesion synthesis of the $N^2$-2'-deoxyguanosine adduct of the dietary mutagen IQ in human cells: Errorfree replication by DNA polymerase ${\kappa}$ and mutagenic bypass by DNA polymerases ${\eta},\;{\zeta}$, and Rev1. Chem. Res. Toxicol., 29, 1549-1559. https://doi.org/10.1021/acs.chemrestox.6b00221
  31. Bose, A., Pande, P., Jasti, V.P., Millsap, A.D., Hawkins, E.K., Rizzo, C.J. and Basu, A.K. (2015) DNA polymerases ${\kappa}$ and $\zeta$ cooperatively perform mutagenic translesion synthesis of the C8-2'-deoxyguanosine adduct of the dietary mutagen IQ in human cells. Nucleic Acids Res., 43, 8340-8351. https://doi.org/10.1093/nar/gkv750
  32. Tokarsky, E.J., Gadkari, V.V., Zahurancika, W.J., Malik, C.K., Basu, A.K. and Suo, Z. (2016) Pre-steady-state kinetic investigation of bypass of a bulky guanine lesion by human Y-family DNA polymerases. DNA Repair (Amst.), 46, 20-28. https://doi.org/10.1016/j.dnarep.2016.08.002
  33. Patra, A., Politica, D.A., Chatterjee, A., Tokarsky, E.J., Suo, Z., Basu, A.K., Stone, M.P. and Egli, M. (2016) Mechanism of error-free bypass of the environmental carcinogen N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone adduct by human DNA polymerase $\eta$. Chembiochem, 17, 2033-2037. https://doi.org/10.1002/cbic.201600420
  34. Sherrer, S.M., Sanman, L.E., Xia, C.X., Bolin, E.R., Malik, C.K., Efthimiopoulos, G., Basu, A.K. and Suo, Z. (2012) Kinetic analysis of the bypass of a bulky DNA lesion catalyzed by human Y-family DNA polymerases. Chem. Res. Toxicol., 25, 730-740. https://doi.org/10.1021/tx200531y
  35. Sherrer, S.M., Taggart, D.J., Pack, L.R., Malik, C.K., Basu, A.K. and Suo, Z. (2012) Quantitative analysis of the mutagenic potential of 1-aminopyrene-DNA adduct bypass catalyzed by Y-family DNA polymerases. Mutat. Res., 737, 25-33. https://doi.org/10.1016/j.mrfmmm.2012.08.002
  36. Maga, G., Villani, G., Crespan, E., Wimmer, U., Ferrari, E., Bertocci, B. and Hubscher, U. (2007) 8-oxo-guanine bypass by human DNA polymerases in the presence of auxiliary proteins. Nature, 447, 606-608. https://doi.org/10.1038/nature05843
  37. Moriya, M. (1993) Single-stranded shuttle phagemid for mutagenesis studies in mammalian cells: 8-oxoguanine in DNA induces targeted G.C-->T.A transversions in simian kidney cells. Proc. Natl. Acad. Sci. U.S.A., 90, 1122-1126. https://doi.org/10.1073/pnas.90.3.1122
  38. Yang, I.Y., Miller, H., Wang, Z., Frank, E.G., Ohmori, H., Hanaoka, F. and Moriya, M. (2003) Mammalian translesion DNA synthesis across an acrolein-derived deoxyguanosine adduct. Participation of DNA polymerase $\eta$ in error-prone synthesis in human cells. J. Biol. Chem., 278, 13989-13994. https://doi.org/10.1074/jbc.M212535200
  39. Hashimoto, K., Bonala, R., Johnson, F., Grollman, A.P. and Moriya, M. (2016) Y-family DNA polymerase-independent gap-filling translesion synthesis across aristolochic acidderived adenine adducts in mouse cells. DNA Repair (Amst.), 46, 55-60. https://doi.org/10.1016/j.dnarep.2016.07.003
  40. Pollack, M., Yang, I.Y., Kim, H.Y., Blair, I.A. and Moriya, M. (2006) Translesion DNA Synthesis across the heptanone--etheno-2'-deoxycytidine adduct in cells. Chem. Res. Toxicol., 19, 1074-1079. https://doi.org/10.1021/tx0600503
  41. Yasui, M., Dong, H., Bonala R.R., Suzuki, N., Ohmori, H., Hanaoka, F., Johnson, F., Grollman, A.P. and Shibutani S. (2004) Mutagenic properties of 3-(deoxyguanosin-$N^2$-yl)-2-acetylaminofluorene, a persistent acetylaminofluorene-derived DNA adduct in mammalian cells. Biochemistry, 43, 15005-15013. https://doi.org/10.1021/bi048279+
  42. Avkin, S. and Livneh, Z. (2002) Efficiency, specificity and DNA polymerase-dependence of translesion replication across the oxidative DNA lesion 8-oxoguanine in human cells. Mutat. Res., 510, 81-90. https://doi.org/10.1016/S0027-5107(02)00254-3
  43. Avkin, S., Goldsmith, M., Velasco-Miguel, S., Geacintov, N., Friedberg, E.C. and Livneh, Z. (2004) Quantitative analysis of translesion DNA synthesis across a benzo[a]pyrene-guanine adduct in mammalian cells: the role of DNA polymerase $\kappa$. J. Biol. Chem., 279, 53298-53305. https://doi.org/10.1074/jbc.M409155200
  44. Watt, D.L., Utzat, C.D., Hilario, P. and Basu, A.K. (2007) Mutagenicity of the 1-nitropyrene-DNA adduct N-(deoxyguanosin-8-yl)-1-aminopyrene in mammalian cells. Chem. Res. Toxicol., 20, 1658-1664. https://doi.org/10.1021/tx700131e
  45. Tolentino, J.H., Burke, T.J., Mukhopadhyay, S., McGregor, W.G. and Basu, A.K. (2008) Inhibition of DNA replication fork progression and mutagenic potential of 1, $N^6$-ethenoadenine and 8-oxoguanine in human cell extracts. Nucleic Acids Res., 36, 1300-1308.
  46. Pande, P., Malik, C.K., Bose, A., Jasti, V.P. and Basu, A.K. (2014) Mutational analysis of the C8-guanine adduct of the environmental carcinogen 3-nitrobenzanthrone in human cells: critical roles of DNA polymerases $\eta$ and $\kappa$ and Rev1 in errorprone translesion synthesis. Biochemistry, 53, 5323-5331. https://doi.org/10.1021/bi5007805
  47. Veaute, X. and Fuchs, R. (1993) Greater susceptibility to mutations in lagging strand of DNA replication in Escherichia coli than in leading strand. Science, 261, 598-600. https://doi.org/10.1126/science.8342022
  48. Sawai, T., Kawanishi, M., Takamura-Enya, T. and Yagi, T. (2009) Establishment of a method for analyzing translesion DNA synthesis across a single bulky adduct in human cells. Genes Environ., 31, 24-30. https://doi.org/10.3123/jemsge.31.24
  49. Kawanishi, M., Kanno, T., Nishida, H., Takamura-Enya, T. and Yagi, T. (2013) Translesion DNA synthesis across various DNA adducts produced by 3-nitrobenzanthrone in Escherichia coli. Mutat. Res., 754, 32-38. https://doi.org/10.1016/j.mrgentox.2013.04.001
  50. Sawai, T., Kawanishi, M., Takamura-Enya, T. and Yagi, T. (2009) Mutations mediated by translesion DNA synthesis over 4-aminobiphenyl adducts in human cells. Radiat. Biol. Commun., 44, 274-284 (in Japanese).

Cited by

  1. Bowl-in-bowl complex formation with mixed sized calixarenes: adaptivity towards guest binding vol.54, pp.52, 2018, https://doi.org/10.1039/C8CC03415J