• 제목/요약/키워드: Coupling of mode in time

검색결과 86건 처리시간 0.025초

Models and Experiments for the Main Topologies of MRC-WPT Systems

  • Yang, Mingbo;Wang, Peng;Guan, Yanzhi;Yang, Zhenfeng
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1694-1706
    • /
    • 2017
  • Models and experiments for magnetic resonance coupling wireless power transmission (MRC-WPT) topologies such as the chain topology and branch topology are studied in this paper. Coupling mode theory based energy resonance models are built for the two topologies. Complete energy resonance models including input items, loss coefficients, and coupling coefficients are built for the two topologies. The storage and the oscillation model of the resonant energy are built in the time domain. The effect of the excitation item, loss item, and coupling coefficients on MRC systems are provided in detail. By solving the energy oscillation time domain model, distance enhancing models are established for the chain topology, and energy relocating models are established for the branch topology. Under the assumption that there are no couplings between every other coil or between loads, the maximum transmission capacity conditions are found for the chain topology, and energy distribution models are established for the branch topology. A MRC-WPT experiment was carried out for the verification of the above model. The maximum transmission distance enhancement condition for the chain topology, and the energy allocation model for the branch topology were verified by experiments.

Two Dimensional Transfer Modes in $CH_2$ Spin System

  • NamGoong Hyun
    • 한국자기공명학회논문지
    • /
    • 제10권1호
    • /
    • pp.59-73
    • /
    • 2006
  • Spin-lattice relaxation pathway of $CH_2$ spin system by two dimensional NOESY sequence has been discussed. Two-dimensional spectra governed by dipolar relaxation mechanism were simulated in term of transfer mode, the generalization of conventionally used magnetization mode in one dimension. The transfer matrix directly related to the Redfield relaxation matrix can be constructed by the multiplet of transfer mode. The observable relaxation transfer modes causes to variation of the off-diagonal signal intensity of phase sensitive NOESY spectra from which variable spectral density can be extracted with simple group theoretical calculation. The variation of the J-coupling peak intensity as a function of the mixing time in 2-D spectra for $n-Undecane-5-^{13}C$ and Bromoacetic $2-^{13}C$ acid has been theoretically traced.

  • PDF

3차원 FDTD Simulation을 이용한 자기조립된 Ag 나노입자의 국소표면플라즈몬공명 상호작용 현상 연구 (Localized Surface Plasmon Resonance Coupling in Self-Assembled Ag Nanoparticles by Using 3-Dimensional FDTD Simulation)

  • 이경민;윤순길;정종율
    • 한국재료학회지
    • /
    • 제24권8호
    • /
    • pp.417-422
    • /
    • 2014
  • In this study, we investigated localized surface plasmon resonance and the related coupling phenomena with respect to various geometric parameters of Ag nanoparticles, including the size and inter-particle distance. The plasmon resonances of Ag nanoparticles were studied using three-dimensional finite difference time domain(FDTD) calculations. From the FDTD calculations, we discovered the existence of a symmetric and an anti-symmetric plasmon coupling modes in the coupled Ag nanoparticles. The dependence of the resonance wavelength with respect to the inter-particle distance was also investigated, revealing that the anti-symmetric mode is more closely correlated with the inter-particle distance of the Ag nanoparticles than the symmetric mode. We also found that higher order resonance modes are appeared in the extinction spectrum for closely spaced Ag nanoparticles. Plasmon resonance calculations for the Ag particles coated with a $SiO_2$ layer showed enhanced plasmon coupling due to the strengthened plasmon resonance, suggesting that the inter-particle distance of the Ag nanoparticles can be estimated by measuring the transmission and absorption spectra with the plasmon resonance of symmetric and anti-symmetric localized surface plasmons.

시간영역에서 순시 유효/무효전력을 이용한 마이크로그리드의 단독운전 판단 (Islanding Detection for a Micro-Grid based on the Instantaneous Active and Reactive Powers in the Time Domain)

  • 이영귀;김연희;정태영;김태현;강용철
    • 전기학회논문지
    • /
    • 제61권1호
    • /
    • pp.22-27
    • /
    • 2012
  • Correct and fast detection of a micro-grid (MG) islanding is essential to the MG since operation, control and protection of the MG depend on an operating mode i.e., an interconnected mode or an islanding mode. When islanding occurs, the frequency of the point of common coupling (PCC) is not the nominal frequency during the transient state owing to the frequency rise or drop of generators in the MG. Thus, the active and reactive power calculated by the frequency domain based method such as Fourier Transform might contain some errors. This paper proposes an islanding detection algorithm for the MG based on the instantaneous active and reactive powers delivered to the dedicated line in the time domain. During the islanding mode, the instantaneous active and reactive powers delivered to the dedicated line are constants, which depend on the voltage of the PCC and the impedance of the dedicated line. In this paper, the instantaneous active and reactive powers are calculated in the time domain and used to detect islanding. The performance of the proposed algorithm is verified under various scenarios including islanding conditions, fault conditions and load variation using the PSCAD/EMTDC simulator. The results indicate that the algorithm successfully detects islanding for the MG.

Coupling of Electromagnetic and Electrostatic Waves in Inhomogeneous Plasmas

  • Kim, Kyung-Sub;Kim, Eun-Hwa;Lee, Dong-Hun
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2003년도 한국우주과학회보 제12권2호
    • /
    • pp.82-82
    • /
    • 2003
  • It is well known that electromagnetic (EM) waves are mode converted to electrostatic (ES) waves in inhomogeneous plasmas. We examine this issue in a three-dimensional multi-fluid numerical model. First, we derive a set of coupled linear wave equations when a one-dimensional inhomogeneous density profile is assumed in a cold and collisionless plasma. The massive ions are considered as fixed because we are interested in high frequency waves in plasmas. It is shown that the EM mode satisfies the 0th order modified Bessel equation near the resonant region where the frequency matches the local electron plasma frequency. It is expected that the EM waves are coupled and damped to the ES waves owing to the logarithmic singular behavior at such resonances. Second, we numerically test the same case in a 3-D multi-fluid model. An impulsive input is assumed to excite EM waves in the inhomogeneous 3-D box model. The wave spectra of electric and magnetic fields are presented and compared with the analytical results. Our results suggest that the EM energy is irreversibly converted into the ES energy wherever the resonant condition is satisfied. Finally we discuss how the mode conversion appears in both electric and magnetic fields by analyzing time histories of each component. We also compare our results with MHD wave coupling. It is numerically confirmed in this study that the coupling of EM and ES waves is similar to that of compressional and transverse MHD waves.

  • PDF

Ultrafast probes of coherent oscillations in Fe-based superconductors

  • Kim, K.W.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권1호
    • /
    • pp.1-4
    • /
    • 2017
  • Forefront ultrafast experimental techniques have recently proven their potential as new approaches to understand materials based on non-equilibrium dynamics in the time domain. The time domain approach is useful especially in disentangling complicated coupling among charge, spin and lattice degrees of freedom. Various ultrafast experiments on Fe-based superconductors have observed strong coherent oscillations of an $A_{1g}$ phonon mode of arsenic ions, which shows strong coupling to the electronic and magnetic states. This paper reviews the recent reports of ultrafast studies on Fe-based superconductor with a focus on the coherent oscillations. Experimental results with ultrashort light sources from the terahertz-infrared pulses to the hard X-rays from a free electron laser will be presented.

스퀼융합모델을 이용한 디스크 브레이크 스퀼 소음 연구 (Squeal Analysis of Disc Brake Using Analytical-FE Squeal Model)

  • 강재영
    • 한국산학기술학회논문지
    • /
    • 제15권11호
    • /
    • pp.6406-6411
    • /
    • 2014
  • 본 논문은 자동차 디스크 브레이크에서 발생하는 스퀼 현상을 보다 효과적으로 해석할 수 있는 스퀼 융합모델을 소개한다. 시스템의 형상 및 진동모드 추출은 유한요소법을 따르고 각 부품별 접촉부의 기술은 수학적 모델을 이용한다. 특히 회전하는 디스크와 정지상태의 패드 간 마찰력을 수학적으로 정교하게 기술하여 이를 유한요소 운동방정식에 접목한다. 이를 통해 선형안정성의 해의 정확도를 개선한다. 또한 다양한 시스템 파라메터 연구를 통하여 접촉강성에 대한 스퀼 민감도 및 모드연성 메카니즘을 구현한다.

Low-loss Electrically Controllable Vertical Directional Couplers

  • Tran, Thang Q.;Kim, Sangin
    • Current Optics and Photonics
    • /
    • 제1권1호
    • /
    • pp.65-72
    • /
    • 2017
  • We propose a nearly lossless, compact, electrically modulated vertical directional coupler, which is based on the controllable evanescent coupling in a previously proposed graphene-assisted total internal reflection (GA-FTIR) scheme. In the proposed device, two single-mode waveguides are separate by graphene-$SiO_2$-graphene layers. By changing the chemical potential of the graphene layers with a gate voltage, the coupling strength between the waveguides, and hence the coupling length of the directional coupler, is controlled. Therefore, for a properly chosen, fixed device length, when an input wave is launched into one of the waveguides, the ratio of their output powers can be controlled electrically. The operation of the proposed device is analyzed, with the dispersion relations calculated using a model of a one-dimensional slab waveguide. The supermodes in the coupled waveguide are calculated using the finite-element method to estimate the coupling length, realistic devices are designed, and their performance was confirmed using the finite-difference time-domain method. The designed $3{\mu}m$ by $1{\mu}m$ device achieves an insertion loss of less than 0.11 dB, and a 24-dB extinction ratio between bar and cross states. The proposed low-loss device could enable integrated modulation of a strong optical signal, without thermal buildup.

Integrated Guidance and Control Design for the Near Space Interceptor

  • WANG, Fei;LIU, Gang;LIANG, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.278-294
    • /
    • 2015
  • Considering the guidance and control problem of the near space interceptor (NSI) during the terminal course, this paper proposes a three-channel independent integrated guidance and control (IGC) scheme based on the backstepping sliding mode and finite time disturbance observer (FTDO). Initially, the three-channel independent IGC model is constructed based on the interceptor-target relative motion and nonlinear dynamic model of the interceptor, in which the channel coupling term and external disturbance are regarded as the total disturbances of the corresponding channel. Then, the FTDO is introduced to estimate the target acceleration and control system loop disturbances, and the feed-forward compensation term based on the estimated values is employed to effectively remove the effect of disturbances in finite time. Subsequently, the IGC algorithm based on the backstepping sliding mode is also given to obtain the virtual control moment. Furthermore, a robust least-squares weighted control allocation (RLSWCA) algorithm is employed to distribute the previous virtual control moment among the corresponding aerodynamic fins and reaction jets, which also takes into account the uncertainty in the control effectiveness matrix. Finally, simulation results show that the proposed IGC method can obtain the small miss distance and smooth interceptor trajectories.

장거리 벨트 컨베이어의 기동 및 정지시의 동적거동 해석 (Dynamic Analyis of Long Distance Belt Conveyor During Starting and Stopping)

  • 김원진;박태건;이신섭
    • 대한기계학회논문집A
    • /
    • 제20권2호
    • /
    • pp.585-593
    • /
    • 1996
  • According to the considerable increase of the length of belt conveyors, the dynamic analysis of systme becomes necessary to consider the variation of tensions and transient motion of components during starting and stopping of conveyor. The mathematical model of system is derived using the lumped parameter method. The input driving force is represented with two functions of time and pulley speed to count the characteristics of motor and fluid coupling. An example system was studied with 14 km in the distance of carrying. At head, it has two drivers and one gravity take-up and at tail ond driver and one power winch take-up. In the example, the transient tensions and responses, calculated using two cases of driving force, are mutually compared in starting mode. Also, the position of maximum tension and the braking force of take-up are obtained in stopping mode.