Browse > Article
http://dx.doi.org/10.3740/MRSK.2014.24.8.417

Localized Surface Plasmon Resonance Coupling in Self-Assembled Ag Nanoparticles by Using 3-Dimensional FDTD Simulation  

Lee, Kyung-Min (Department of Materials Science and Engineering and Graduate School of Energy Science and Technology, Chungnam National University)
Yoon, Soon-Gil (Department of Materials Science and Engineering and Graduate School of Energy Science and Technology, Chungnam National University)
Jeong, Jong-Ryul (Department of Materials Science and Engineering and Graduate School of Energy Science and Technology, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.24, no.8, 2014 , pp. 417-422 More about this Journal
Abstract
In this study, we investigated localized surface plasmon resonance and the related coupling phenomena with respect to various geometric parameters of Ag nanoparticles, including the size and inter-particle distance. The plasmon resonances of Ag nanoparticles were studied using three-dimensional finite difference time domain(FDTD) calculations. From the FDTD calculations, we discovered the existence of a symmetric and an anti-symmetric plasmon coupling modes in the coupled Ag nanoparticles. The dependence of the resonance wavelength with respect to the inter-particle distance was also investigated, revealing that the anti-symmetric mode is more closely correlated with the inter-particle distance of the Ag nanoparticles than the symmetric mode. We also found that higher order resonance modes are appeared in the extinction spectrum for closely spaced Ag nanoparticles. Plasmon resonance calculations for the Ag particles coated with a $SiO_2$ layer showed enhanced plasmon coupling due to the strengthened plasmon resonance, suggesting that the inter-particle distance of the Ag nanoparticles can be estimated by measuring the transmission and absorption spectra with the plasmon resonance of symmetric and anti-symmetric localized surface plasmons.
Keywords
Ag nanoparticles; surface plasmon resonance; plasmon coupling; FDTD;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Y. J. Kim, J. S. Cho, J. C. Lee, J. S. Wang, J. S. Song and J. H. Yoon, Kor. J. Mater. Res., 19(5), 245 (2009) (in Korean).   DOI   ScienceOn
2 H. C. S. -J. Ko, Y. C. P. Joo, T. Kim, B. R. Lee, J. -W. Jung, H. J. Choi, M. Cha, J. -R. Jeong, I. -W. Hwang, M. H. Song, B. -S. Kim and J. Y. Kim, Nature Photon. 7, 732 (2013).   DOI
3 T. S. Lee and J. -R. Jeong, Kor. J. Mater. Res. 22(10), 519 (2012).   DOI   ScienceOn
4 M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia and G. V. Hartland, J. Mater. Chem. 18(17), 1949 (2008).   DOI   ScienceOn
5 F. J. Beck, A. Polman and K. R. Catchpole. J. Appl. Phys. 105, 114310 (2009).   DOI   ScienceOn
6 Loucas Tsakalakos, Nanotechnology for Photovoltaics, CRC Press, 391 (2010).
7 H. A. Atwater and A. Polman, Nat. Mater., 9(3), 205 (2010).   DOI   ScienceOn
8 K. R. Catchpole and A. Polman, Opt. Express 16, 21793 (2008).   DOI
9 S. -Y. Heo, B. -J. Park, J. -R. Jeong and S. -G. Yoon, J. Alloy Compd., 602, 255 (2014).   DOI   ScienceOn
10 FDTD solutions (www.lumerical.com)
11 G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou and C. M. Soukoulis, Opt. Lett., 30(23), 3198 (2005).   DOI   ScienceOn
12 Kelly KL, Coronado E, Zhao LL and Schatz GC, J. Phys. Chem., B 107, 668 (2003).
13 M. -M. Jiang, H. -Y. Chen, B. -H. Li, K. -W. Liu, C. -X. Shan and D. -Z. Shen, J. Mater. Chem. C, 2, 56 (2014).   DOI
14 V. E. Ferry, J. N. Munday and H. A. Atwater, Adv. Mater., 22, 4794 (2010).   DOI